Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2013, Article ID 542810, 5 pages
http://dx.doi.org/10.1155/2013/542810
Research Article

Growth Induction and Low-Oxygen Apoptosis Inhibition of Human CD34+ Progenitors in Collagen Gels

1Laboratorio di Biologia Vascolare e Medicina Rigenerativa, Centro Cardiologico Monzino, 20138 Milano, Italy
2Laboratorio di Patologia Vascolare, Istituto Dermopatico dell’Immacolata, 00166 Rome, Italy
3Institute of Biofunctional Polymer Material, Leibniz-Institüt für Polymerforschung, 01069 Dresden, Germany
4Laboratorio di Ingegneria Tissutale Cardiovascolare, Centro Cardiologico Monzino IRCCS, Via Parea 4, 20138 Milano, Italy

Received 26 July 2012; Accepted 8 August 2012

Academic Editor: Maria Elena Padin Iruegas

Copyright © 2013 Daniele Avitabile et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Pesce, I. Burba, E. Gambini, F. Prandi, G. Pompilio, and M. C. Capogrossi, “Endothelial and cardiac progenitors: boosting, conditioning and (re)programming for cardiovascular repair,” Pharmacology and Therapeutics, vol. 129, no. 1, pp. 50–61, 2011. View at Publisher · View at Google Scholar · View at Scopus
  2. T. Thum, J. Bauersachs, P. A. Poole-Wilson, H. D. Volk, and S. D. Anker, “The dying stem cell hypothesis: immune modulation as a novel mechanism for progenitor cell therapy in cardiac muscle,” Journal of the American College of Cardiology, vol. 46, no. 10, pp. 1799–1802, 2005. View at Publisher · View at Google Scholar · View at Scopus
  3. A. Gianella, U. Guerrini, M. Tilenni et al., “Magnetic resonance imaging of human endothelial progenitors reveals opposite effects on vascular and muscle regeneration into ischaemic tissues,” Cardiovascular Research, vol. 85, no. 3, pp. 503–513, 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. M. P. Lutolf, P. M. Gilbert, and H. M. Blau, “Designing materials to direct stem-cell fate,” Nature, vol. 462, no. 7272, pp. 433–441, 2009. View at Publisher · View at Google Scholar · View at Scopus
  5. K. Alberti, R. E. Davey, K. Onishi et al., “Functional immobilization of signaling proteins enables control of stem cell fate,” Nature Methods, vol. 5, no. 7, pp. 645–650, 2008. View at Publisher · View at Google Scholar · View at Scopus
  6. R. Peerani and P. W. Zandstra, “Enabling stem cell therapies through synthetic stem cell-niche engineering,” Journal of Clinical Investigation, vol. 120, no. 1, pp. 60–70, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. M. Pesce, A. Orlandi, M. G. Iachininoto et al., “Myoendothelial differentiation of human umbilical cord blood-derived stem cells in ischemic limb tissues,” Circulation Research, vol. 93, no. 5, pp. e51–e62, 2003. View at Google Scholar · View at Scopus
  8. J. Oswald, C. Steudel, K. Salchert et al., “Gene-expression profiling of CD34+ hematopoietic cells expanded in a collagen I matrix,” Stem Cells, vol. 24, no. 3, pp. 494–500, 2006. View at Publisher · View at Google Scholar · View at Scopus
  9. F. Timmermans, J. Plum, M. C. Yöder, D. A. Ingram, B. Vandekerckhove, and J. Case, “Endothelial progenitor cells: identity defined?” Journal of Cellular and Molecular Medicine, vol. 13, no. 1, pp. 87–102, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. L. L. Ong, W. Li, J. K. Oldigs et al., “Hypoxic/normoxic preconditioning increases endothelial differentiation potential of human bone marrow CD133+ cells,” Tissue Engineering Part C, vol. 16, no. 5, pp. 1069–1081, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. Z. Ivanovic, F. Hermitte, P. B. De La Grange et al., “Simultaneous maintenance of human cord blood SCID-repopulating cells and expansion of committed progenitors at low O2 concentration (3%),” Stem Cells, vol. 22, no. 5, pp. 716–724, 2004. View at Google Scholar · View at Scopus
  12. A. V. Guitart, M. Hammoud, P. Dello Sbarba, Z. Ivanovic, and V. Praloran, “Slow-cycling/quiescence balance of hematopoietic stem cells is related to physiological gradient of oxygen,” Experimental Hematology, vol. 38, no. 10, pp. 847–851, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. A. Mohyeldin, T. Garzón-Muvdi, and A. Quiñones-Hinojosa, “Oxygen in stem cell biology: a critical component of the stem cell niche,” Cell Stem Cell, vol. 7, no. 2, pp. 150–161, 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. S. Giuntoli, E. Rovida, A. Gozzini et al., “Severe hypoxia defines heterogeneity and selects highly immature progenitors within clonal erythroleukemia cells,” Stem Cells, vol. 25, no. 5, pp. 1119–1125, 2007. View at Publisher · View at Google Scholar · View at Scopus
  15. I. Vermes, C. Haanen, H. Steffens-Nakken, and C. Reutelingsperger, “A novel assay for apoptosis. Flow cytometric detection of phosphatidylserine expression on early apoptotic cells using fluorescein labelled Annexin V,” Journal of Immunological Methods, vol. 184, no. 1, pp. 39–51, 1995. View at Publisher · View at Google Scholar · View at Scopus
  16. A. J. Keung, S. Kumar, and D. V. Schaffer, “Presentation counts: microenvironmental regulation of stem cells by biophysical and material cues,” Annual Review of Cell and Developmental Biology, vol. 26, no. 1, pp. 533–556, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. A. E. X. Brown and D. E. Discher, “Conformational changes and signaling in cell and matrix physics,” Current Biology, vol. 19, no. 17, pp. R781–R789, 2009. View at Publisher · View at Google Scholar · View at Scopus