Table of Contents Author Guidelines Submit a Manuscript
Corrigendum

A corrigendum for this article has been published. To view the corrigendum, please click here.

BioMed Research International
Volume 2013 (2013), Article ID 578479, 11 pages
http://dx.doi.org/10.1155/2013/578479
Research Article

The Effects of Cytokines in Adipose Stem Cell-Conditioned Medium on the Migration and Proliferation of Skin Fibroblasts In Vitro

Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China

Received 26 July 2013; Revised 24 October 2013; Accepted 11 November 2013

Academic Editor: Sanga Gehmert

Copyright © 2013 Jiajia Zhao et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. P. A. Zuk, M. Zhu, H. Mizuno et al., “Multilineage cells from human adipose tissue: implications for cell-based therapies,” Tissue Engineering, vol. 7, no. 2, pp. 211–228, 2001. View at Publisher · View at Google Scholar · View at Scopus
  2. B. A. Bunnell, M. Flaat, C. Gagliardi, B. Patel, and C. Ripoll, “Adipose-derived stem cells: isolation, expansion and differentiation,” Methods, vol. 45, no. 2, pp. 115–120, 2008. View at Publisher · View at Google Scholar · View at Scopus
  3. S. J. Hong, D. O. Traktuev, and K. L. March, “Therapeutic potential of adipose-derived stem cells in vascular growth and tissue repair,” Current Opinion in Organ Transplantation, vol. 15, no. 1, pp. 86–91, 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. M. E. Fernyhough, G. J. Hausman, L. L. Guan, E. Okine, S. S. Moore, and M. V. Dodson, “Mature adipocytes may be a source of stem cells for tissue engineering,” Biochemical and Biophysical Research Communications, vol. 368, no. 3, pp. 455–457, 2008. View at Publisher · View at Google Scholar · View at Scopus
  5. A. Sterodimas, J. De Faria, B. Nicaretta, and I. Pitanguy, “Tissue engineering with adipose-derived stem cells (ADSCs): current and future applications,” Journal of Plastic, Reconstructive and Aesthetic Surgery, vol. 63, no. 11, pp. 1886–1892, 2010. View at Publisher · View at Google Scholar · View at Scopus
  6. J. Liu, J. J. Mao, and L. Chen, “Epithelial-mesenchymal interactions as a working concept for oral mucosa regeneration,” Tissue Engineering B, vol. 17, no. 1, pp. 25–31, 2011. View at Publisher · View at Google Scholar · View at Scopus
  7. X. Fu, L. Fang, H. Li, X. Li, B. Cheng, and Z. Sheng, “Adipose tissue extract enhances skin wound healing,” Wound Repair and Regeneration, vol. 15, no. 4, pp. 540–548, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. Z. Yuan, H. Nie, S. Wang et al., “Biomaterial selection for tooth regeneration,” Tissue Engineering B, vol. 17, no. 5, pp. 373–388, 2011. View at Publisher · View at Google Scholar · View at Scopus
  9. W.-S. Kim, B.-S. Park, J.-H. Sung et al., “Wound healing effect of adipose-derived stem cells: a critical role of secretory factors on human dermal fibroblasts,” Journal of Dermatological Science, vol. 48, no. 1, pp. 15–24, 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. B. M. Hantash, L. Zhao, J. A. Knowles, and H. P. Lorenz, “Adult and fetal wound healing,” Frontiers in Bioscience, vol. 13, no. 1, pp. 51–61, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. R. F. Diegelmann and M. C. Evans, “Wound healing: an overview of acute, fibrotic and delayed healing,” Frontiers in Bioscience, vol. 9, pp. 283–289, 2004. View at Google Scholar · View at Scopus
  12. L. Häkkinen, L. Koivisto, and H. Larjava, “An improved method for culture of epidermal keratinocytes from newborn mouse skin,” Methods in Cell Science, vol. 23, no. 4, pp. 189–196, 2001. View at Publisher · View at Google Scholar · View at Scopus
  13. L. Hu, J. Zhao, J. Liu et al., “The effect of adipose stem cell-conditioned medium on vascular endothelial cells, fibroblasts and keratinocytes migration,” Experimental and Therapeutic Medicine, vol. 5, no. 3, pp. 701–706, 2013. View at Google Scholar
  14. L. Hu, J. Hu, J. Zhao et al., “Side-by-side comparison of the biological characteristics of human umbilical cord and adipose tissue-derived mesenchymal stem cells,” BioMed Research International, vol. 2013, Article ID 438243, 2013. View at Publisher · View at Google Scholar
  15. P. Martin, “Wound healing—aiming for perfect skin regeneration,” Science, vol. 276, no. 5309, pp. 75–81, 1997. View at Publisher · View at Google Scholar · View at Scopus
  16. A. J. Singer and R. A. F. Clark, “Cutaneous wound healing,” The New England Journal of Medicine, vol. 341, no. 10, pp. 738–746, 1999. View at Publisher · View at Google Scholar · View at Scopus
  17. S. Barrientos, O. Stojadinovic, M. S. Golinko, H. Brem, and M. Tomic-Canic, “Growth factors and cytokines in wound healing,” Wound Repair and Regeneration, vol. 16, no. 5, pp. 585–601, 2008. View at Publisher · View at Google Scholar · View at Scopus
  18. W. M. Jackson, L. J. Nesti, and R. S. Tuan, “Mesenchymal stem cell therapy for attenuation of scar formation during wound healing,” Stem Cell Research & Therapy, vol. 3, no. 3, p. 20, 2012. View at Google Scholar
  19. C. Hsu and J. Chang, “Clinical implications of growth factors in flexor tendon wound healing,” Journal of Hand Surgery, vol. 29, no. 4, pp. 551–563, 2004. View at Publisher · View at Google Scholar · View at Scopus
  20. V. Freire, N. Andollo, J. Etxebarria et al., “In vitro effects of three blood derivataves on human corneal epithelial cells,” Investigative Ophthalmology & Visual Science, vol. 53, no. 9, pp. 5571–5578, 2012. View at Google Scholar
  21. M. M. Santoro, G. Gaudino, and P. C. Marchisio, “The MSP receptor regulates α6β4 and α3β1 integrins via 14-3-3 proteins in keratinocyte migration,” Developmental Cell, vol. 5, no. 2, pp. 257–271, 2003. View at Publisher · View at Google Scholar · View at Scopus
  22. A. J. Cowin, N. Kallincos, N. Hatzirodos et al., “Hepatocyte growth factor and macrophage-stimulating protein are upregulated during excisional wound repair in rats,” Cell and Tissue Research, vol. 306, no. 2, pp. 239–250, 2001. View at Publisher · View at Google Scholar · View at Scopus
  23. J. G. Rheinwald and H. Green, “Epidermal growth factor and the multiplication of cultured human epidermal keratinocytes,” Nature, vol. 265, no. 5593, pp. 421–424, 1977. View at Google Scholar · View at Scopus
  24. L. J. McCawley, P. O'Brien, and L. G. Hudson, “Epidermal growth factor (EGF)- and scatter factor/hepatocyte growth factor (SF/HGF)-mediated keratinocyte migration is coincident with induction of matrix metalloproteinase (MMP)-9,” Journal of Cellular Physiology, vol. 176, no. 2, pp. 255–265, 1998. View at Google Scholar
  25. L. G. Hudson and L. J. McCawley, “Contributions of the epidermal growth factor receptor to keratinocyte motility,” Microscopy Research and Technique, vol. 43, no. 5, pp. 444–455.
  26. S. Tokumaru, S. Higashiyama, T. Endo et al., “Ectodomain shedding of epidermal growth factor receptor ligands is required for keratinocyte migration in cutaneous wound healing,” Journal of Cell Biology, vol. 151, no. 2, pp. 209–219, 2000. View at Publisher · View at Google Scholar · View at Scopus
  27. Y. Ando and P. J. Jensen, “Epidermal growth factor and insulin-like growth factor I enhance keratinocyte migration,” Journal of Investigative Dermatology, vol. 100, no. 5, pp. 633–639, 1993. View at Google Scholar · View at Scopus
  28. S. Barrientos, O. Stojadinovic, M. S. Golinko, H. Brem, and M. Tomic-Canic, “Growth factors and cytokines in wound healing,” Wound Repair and Regeneration, vol. 16, no. 5, pp. 585–601, 2008. View at Publisher · View at Google Scholar · View at Scopus
  29. C.-H. Heldin and B. Westermark, “Mechanism of action and in vivo role of platelet-derived growth factor,” Physiological Reviews, vol. 79, no. 4, pp. 1283–1316, 1999. View at Google Scholar · View at Scopus
  30. C. A. Staton, M. Valluru, L. Hoh, M. W. R. Reed, and N. J. Brown, “Angiopoietin-1, angiopoietin-2 and Tie-2 receptor expression in human dermal wound repair and scarring,” British Journal of Dermatology, vol. 163, no. 5, pp. 920–927, 2010. View at Publisher · View at Google Scholar · View at Scopus
  31. E. Kurki, J. Shi, E. Martonen et al., “Distinct effects of calorie restriction on adipose tissue cytokine and angiogenesis profiles in obese and lean mice,” Nutrition & Metabolism, vol. 9, no. 1, p. 64, 2012. View at Google Scholar
  32. R. Ramesh, A. M. Mhashilkar, F. Tanaka et al., “Melanoma differentiation-associated gene 7/interleukin (IL)-24 is a novel ligand that regulates angiogenesis via the IL-22 receptor,” Cancer Research, vol. 63, no. 16, pp. 5105–5113, 2003. View at Google Scholar · View at Scopus
  33. T. Tsuji, M. Nakamori, M. Iwahashi et al., “An armed oncolytic herpes simplex virus expressing thrombospondin-1 has an enhanced in vivo antitumor effect against human gastric cancer,” International Journal of Cancer, vol. 132, no. 2, pp. 485–494, 2013. View at Google Scholar
  34. S. Pantalacci, A. Chaumot, G. Benoît et al., “Conserved features and evolutionary shifts of the eda signaling pathway involved in vertebrate skin appendage development,” Molecular Biology and Evolution, vol. 25, no. 5, pp. 912–928, 2008. View at Publisher · View at Google Scholar · View at Scopus
  35. V. A. Botchkarev and M. Y. Fessing, “Edar signaling in the control of hair follicle development,” The Journal of Investigative Dermatology, vol. 10, no. 3, pp. 247–251, 2005. View at Google Scholar · View at Scopus