Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2013 (2013), Article ID 579859, 7 pages
http://dx.doi.org/10.1155/2013/579859
Research Article

Cytotoxicity of Ferulic Acid on T24 Cell Line Differentiated by Different Microenvironments

1Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, 250 Wu-Hsing Street, Taipei 11031, Taiwan
2Research Institute of Biotechnology, Hungkuang University, 34 Chung-Chie Road, Shalu County, Taichung 43302, Taiwan
3Department of Food and Applied Biotechnology, Hungkuang University, 34 Chung-Chie Road, Shalu County, Taichung 43302, Taiwan
4Department of Urology, School of Medicine, College of Medicine, Taipei Medical University, 250 Wu-Hsing Street, Taipei 11031, Taiwan
5Division of Urology, Department of Surgery, Shin Kong Wu Ho-Su Memorial Hospital, 95 Wen Chang Road, Taipei 111, Taiwan

Received 18 September 2012; Revised 23 February 2013; Accepted 23 February 2013

Academic Editor: Fabio Ferreira Perazzo

Copyright © 2013 Chiung-Chi Peng et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Ferulic acid (4-hydroxy-3-methoxycinnamic acid) (FA) is a ubiquitous health beneficial phenolic acid. Although FA has shown a diversity of biological activities including anti-inflammatory, antihypercholesterolemic and anticancer bioactivities, studies revealing its adverse effects are accumulating. Recently, 3D-cultures are shown to exhibit uniquely biological behaviors different from that of 2D cultures. To understand whether the cytotoxicity of FA against the T24 cell line (a bladder cancer cell line) in 2D-culture could consistently retain similar bioactivity if cultured in the 3D-systems, we conducted this experiment with 2 mM FA. Much higher cytotoxicity was found for 3D- than 2D-culture, showing (2D vs. 3D): apoptotic rates, 64% and 76%; cell killing rates,  cells mmol−1·h−1 and cells mmol−1·h−1, attaining a 8.77-fold. FA upregulated the activities at 72 h (2D vs. 3D in folds that of control): SOD, 1.73-folds () versus 3.18 folds (); and catalase, 2.58 versus 1.33-folds. Comparing to the control (without FA), Bcl-2 was prominently downregulated while Bax, caspase-3 and cleaved caspase-9 were more upregulated in 3D-cultures (). Conclusively, different microenvironments could elicit different biological significance which in part can be ascribed to different mass transport rate.