Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2013 (2013), Article ID 580463, 9 pages
http://dx.doi.org/10.1155/2013/580463
Review Article

Expression Systems and Species Used for Transgenic Animal Bioreactors

1Laboratory Animal Center, Xi’an Jiaotong University School of Medicine, Xi’an, Shaanxi 710061, China
2Xi’an Jiaotong University Cardiovascular Research Center, Xi'an, Shaanxi 710061, China
3Department of Molecular Pathology, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Yamanashi 409-3898, Japan

Received 2 November 2012; Revised 15 January 2013; Accepted 17 February 2013

Academic Editor: James D. Murray

Copyright © 2013 Yanli Wang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. L. M. Houdebine, “Production of pharmaceutical proteins by transgenic animals,” Comparative Immunology, Microbiology & Infectious Diseases, vol. 32, no. 2, pp. 107–121, 2009. View at Google Scholar
  2. P. Balbas, “Understanding the art of producing protein and nonprotein molecules in Escherichia coli,” Molecular Biotechnology, vol. 19, no. 3, pp. 251–267, 2001. View at Google Scholar
  3. J. R. Swartz, “Advances in Escherichia coli production of therapeutic proteins,” Current Opinion in Biotechnology, vol. 12, no. 2, pp. 195–201, 2001. View at Google Scholar
  4. G. Giddings, G. Allison, D. Brooks, and A. Carter, “Transgenic plants as factories for biopharmaceuticals,” Nature Biotechnology, vol. 18, no. 11, pp. 1151–1155, 2000. View at Publisher · View at Google Scholar · View at Scopus
  5. B. De Muynck, C. Navarre, and M. Boutry, “Production of antibodies in plants: status after twenty years,” Plant Biotechnology Journal, vol. 8, no. 5, pp. 529–563, 2010. View at Publisher · View at Google Scholar · View at Scopus
  6. E. P. Rybicki, “Plant-made vaccines for humans and animals,” Plant Biotechnology Journal, vol. 8, no. 5, pp. 620–637, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. M. K. Dyck, D. Lacroix, F. Pothier, and M. A. Sirard, “Making recombinant proteins in animals—different systems, different applications,” Trends in Biotechnology, vol. 21, no. 9, pp. 394–409, 2003. View at Publisher · View at Google Scholar · View at Scopus
  8. N. S. Rudolph, “Biopharmaceutical production in transgenic livestock,” Trends in Biotechnology, vol. 17, no. 9, pp. 367–374, 1999. View at Publisher · View at Google Scholar · View at Scopus
  9. D. A. Dunn, D. L. Kooyman, and C. A. Pinkert, “Foundation review: transgenic animals and their impact on the drug discovery industry,” Drug Discovery Today, vol. 10, no. 11, pp. 757–767, 2005. View at Publisher · View at Google Scholar · View at Scopus
  10. K. A. Thiel, “Biomanufacturing, from bust to boom...to bubble?” Nature Biotechnology, vol. 22, no. 11, pp. 1365–1372, 2004. View at Publisher · View at Google Scholar · View at Scopus
  11. R. E. Hammer, V. G. Pursel, C. E. Rexroad et al., “Production of transgenic rabbits, sheep and pigs by miroinjection,” Nature, vol. 315, no. 6021, pp. 680–683, 1985. View at Google Scholar · View at Scopus
  12. L. M. Houdebine, “Transgenic animal bioreactors,” Transgenic Research, vol. 9, no. 4-5, pp. 305–320, 2000. View at Google Scholar · View at Scopus
  13. H. Niemann and W. A. Kues, “Application of transgenesis in livestock for agriculture and biomedicine,” Animal Reproduction Science, vol. 79, no. 3-4, pp. 291–317, 2003. View at Publisher · View at Google Scholar · View at Scopus
  14. W. H. Brondyk, “Selecting an appropriate method for expressing a recombinant protein,” Methods in Enzymology, vol. 463, pp. 131–147, 2009. View at Publisher · View at Google Scholar · View at Scopus
  15. Z. Bösze and L. Hiripi, “Recombinant protein expression in milk of livestock species,” Methods in Molecular Biology, vol. 824, pp. 629–641, 2012. View at Google Scholar
  16. J. D. Murray, N. Mohamad-Fauzi, C. A. Cooper, and E. A. Maga, “Current status of transgenic animal research for human health applications,” Acta Scientiae Veterinariae, vol. 38, no. 2, pp. s627–s632, 2010. View at Google Scholar · View at Scopus
  17. M. Massoud, R. Bischoff, W. Dalemans et al., “Expression of active recombinant human α1-antitrypsin in transgenic rabbits,” Journal of Biotechnology, vol. 18, no. 3, pp. 193–204, 1991. View at Publisher · View at Google Scholar · View at Scopus
  18. M. E. Swanson, M. J. Martin, J. Kevin O'Donnell et al., “Production of functional human hemoglobin in transgenic swine,” Nature Biotechnology, vol. 10, no. 5, pp. 557–559, 1992. View at Google Scholar · View at Scopus
  19. A. Sharma, M. J. Martin, J. F. Okabe et al., “An isologous porcine promoter permits high level expression of human hemoglobin in transgenic swine,” Bio/Technology, vol. 12, no. 1, pp. 55–59, 1994. View at Publisher · View at Google Scholar · View at Scopus
  20. U. H. Weidle, H. Lenz, and G. Brem, “Genes encoding a mouse monoclonal antibody are expressed in transgenic mice, rabbits and pigs,” Gene, vol. 98, no. 2, pp. 185–191, 1991. View at Publisher · View at Google Scholar · View at Scopus
  21. A. Casadevall and M. D. Scharff, “Return to the past: the case for antibody-based therapies in infectious diseases,” Clinical Infectious Diseases, vol. 21, no. 1, pp. 150–161, 1995. View at Google Scholar · View at Scopus
  22. A. J. Harvey, G. Speksnijder, L. R. Baugh, J. A. Morris, and R. Ivarie, “Expression of exogenous protein in the egg white of transgenic chickens,” Nature Biotechnology, vol. 20, no. 4, pp. 396–399, 2002. View at Publisher · View at Google Scholar · View at Scopus
  23. A. J. Harvey and R. Ivarie, “Validating the hen as a bioreactor for the production of exogenous proteins in egg white,” Poultry Science, vol. 82, no. 6, pp. 927–930, 2003. View at Google Scholar · View at Scopus
  24. S. G. Lillico, A. Sherman, M. J. McGrew et al., “Oviduct-specific expression of two therapeutic proteins in transgenic hens,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 6, pp. 1771–1776, 2007. View at Publisher · View at Google Scholar · View at Scopus
  25. C. A. Penno, Y. Kawabe, A. Ito, and M. Kamihira, “Production of recombinant human erythropoietin/Fc fusion protein by genetically manipulated chickens,” Transgenic Research, vol. 19, no. 2, pp. 187–195, 2010. View at Publisher · View at Google Scholar · View at Scopus
  26. P. Chrenek, A. V. Makarevich, J. Pivko, and J. Bulla, “Transgenic farm animal production and application,” Slovak Journal of Animal Science, vol. 43, no. 2, pp. 45–49, 2010. View at Google Scholar
  27. D. E. Kerr, F. Liang, K. R. Bondioli et al., “The bladder as a bioreactor: urothelium production and secretion of growth hormone into urine,” Nature Biotechnology, vol. 16, no. 1, pp. 75–79, 1998. View at Publisher · View at Google Scholar · View at Scopus
  28. Z. Y. Ryoo, M. O. Kim, K. E. Kim et al., “Expression of recombinant human granulocyte macrophage-colony stimulating factor (hGM-CSF) in mouse urine,” Transgenic Research, vol. 10, no. 3, pp. 193–200, 2001. View at Publisher · View at Google Scholar · View at Scopus
  29. H. M. Zbikowska, N. Soukhareva, R. Behnam, H. Lubon, D. Hammond, and S. Soukharev, “Uromodulin promoter directs high-level expression of biologically active human α1-antitrypsin into mouse urine,” Biochemical Journal, vol. 365, no. 1, pp. 7–11, 2002. View at Publisher · View at Google Scholar · View at Scopus
  30. M. K. Dyck, D. Gagné, M. Ouellet et al., “Seminal vesicle production and secretion of growth hormone into seminal fluid,” Nature Biotechnology, vol. 17, no. 11, pp. 1087–1090, 1999. View at Publisher · View at Google Scholar · View at Scopus
  31. T. Toshiki, T. Chantal, R. Corinne et al., “Germline transformation of the silkworm Bombyx mori L. using a piggyBac transposon-derived vector,” Nature Biotechnology, vol. 18, no. 1, pp. 81–84, 2000. View at Publisher · View at Google Scholar · View at Scopus
  32. M. Yamamoto, M. Yamao, H. Nishiyama et al., “New and highly efficient method for silkworm transgenesis using Autographa californica nucleopolyhedrovirus and piggyBac transposable elements,” Biotechnology and Bioengineering, vol. 88, no. 7, pp. 849–853, 2004. View at Publisher · View at Google Scholar · View at Scopus
  33. C. Royer, A. Jalabert, M. Da Rocha et al., “Biosynthesis and cocoon-export of a recombinant globular protein in transgenic silkworms,” Transgenic Research, vol. 14, no. 4, pp. 463–472, 2005. View at Publisher · View at Google Scholar · View at Scopus
  34. K. Tatemastu, H. Sezutsu, and T. Tamura, “Utilization of transgenic silkworms for recombinant protein production,” Journal of Biotechnology and Biomaterials, vol. s9, no. 4, pp. 1–8, 2012. View at Google Scholar
  35. A. Rocha, S. Ruiz, A. Estepa, and J. M. Coll, “Application of inducible and targeted gene strategies to produce transgenic fish: a review,” Marine Biotechnology, vol. 6, no. 2, pp. 118–127, 2004. View at Google Scholar · View at Scopus
  36. H. Y. Ling, A. M. Edwards, M. P. Gantier et al., “An interspecific Nicotiana hybrid as a useful and cost-effective platform for production of animal vaccines,” PLoS One, vol. 7, no. 4, Article ID e35688, 2012. View at Google Scholar
  37. A. G. A. Bijvoet, H. Van Hirtum, M. A. Kroos et al., “Human acid α-glucosidase from rabbit milk has therapeutic effect in mice with glycogen storage disease type II,” Human Molecular Genetics, vol. 8, no. 12, pp. 2145–2153, 1999. View at Publisher · View at Google Scholar · View at Scopus
  38. S. P. Jongen, G. J. Gerwig, B. R. Leeflang et al., “N-glycans of recombinant human acid α-glucosidase expressed in the milk of transgenic rabbits,” Glycobiology, vol. 17, no. 6, pp. 600–619, 2007. View at Publisher · View at Google Scholar · View at Scopus
  39. K. Koles, P. H. C. van Berkel, F. R. Pieper et al., “N- and O-glycans of recombinant human C1 inhibitor expressed in the milk of transgenic rabbits,” Glycobiology, vol. 14, no. 1, pp. 51–64, 2004. View at Publisher · View at Google Scholar · View at Scopus
  40. L. Hiripi, F. Makovics, R. Halter et al., “Expression of active human blood clotting factor VIII in the mammary gland of transgenic rabbits,” DNA and Cell Biology, vol. 22, no. 1, pp. 41–45, 2003. View at Publisher · View at Google Scholar · View at Scopus
  41. P. Chrenek, L. Ryban, H. Vetr et al., “Expression of recombinant human factor VIII in milk of several generations of transgenic rabbits,” Transgenic Research, vol. 16, no. 3, pp. 353–361, 2007. View at Publisher · View at Google Scholar · View at Scopus
  42. A. Rodriguez, F. O. Castro, A. Aguilar et al., “Expression of active human erythropoietin in the mammary gland of lactating transgenic mice and rabbits,” Biological Research, vol. 28, no. 2, pp. 141–153, 1995. View at Google Scholar · View at Scopus
  43. M. Massoud, J. Attal, D. Thépot et al., “The deleterious effects of human erythropoietin gene driven by the rabbit whey acidic protein gene promoter in transgenic rabbits,” Reproduction Nutrition Development, vol. 36, no. 5, pp. 555–563, 1996. View at Google Scholar · View at Scopus
  44. V. P. Korhonen, M. Tolvanen, J. M. Hyttinen et al., “Expression of bovine β-lactoglobulin/human erythropoietin fusion protein in the milk of transgenic mice and rabbits,” European Journal of Biochemistry, vol. 245, no. 2, pp. 482–489, 1997. View at Google Scholar · View at Scopus
  45. A. Aguirre, N. Castro-Palomino, J. De La Fuente, and F. O. Castro, “Expression of human erythropoietin transgenes and of the endogenous wap gene in the mammary gland of transgenic rabbits during gestation and lactation,” Transgenic Research, vol. 7, no. 4, pp. 311–317, 1998. View at Publisher · View at Google Scholar · View at Scopus
  46. T. Mikus, M. Poplstein, J. Sedláková et al., “Generation and phenotypic analysis of a transgenic line of rabbits secreting active recombinant human erythropoietin in the milk,” Transgenic Research, vol. 13, no. 5, pp. 487–498, 2004. View at Publisher · View at Google Scholar · View at Scopus
  47. M. Strömqvist, L. M. Houdebine, J. O. Andersson et al., “Recombinant human extracellular superoxide dismutase produced in milk of transgenic rabbits,” Transgenic Research, vol. 6, no. 4, pp. 271–278, 1997. View at Google Scholar · View at Scopus
  48. J. M. Limonta, F. O. Castro, R. Martinez et al., “Transgenic rabbits as bioreactors for the production of human growth hormone,” Journal of Biotechnology, vol. 40, no. 1, pp. 49–58, 1995. View at Google Scholar
  49. D. Lipinski, J. Jura, R. Kalak et al., “Transgenic rabbit producing human growth hormone in milk,” Journal of Applied Genetics, vol. 44, no. 2, pp. 165–174, 2003. View at Google Scholar
  50. D. Lipinski, J. Zeyland, M. Szalata et al., “Expression of human growth hormone in the milk of transgenic rabbits with transgene mapped to the telomere region of chromosome 7q,” Journal of Applied Genetics, vol. 53, no. 4, pp. 435–442, 2012. View at Google Scholar
  51. T. A. Buhler, T. Bruyere, D. F. Went, G. Stranzinger, and K. Burki, “Rabbit β-casein promoter directs secretion of human interleukin-2 into the milk of transgenic rabbits,” Bio/Technology, vol. 8, no. 2, pp. 140–143, 1990. View at Publisher · View at Google Scholar · View at Scopus
  52. G. Brem, P. Hartl, U. Besenfelder, E. Wolf, N. Zinovieva, and R. Pfaller, “Expression of synthetic cDNA sequences encoding human insulin-like growth factor-1 (IGF-1) in the mammary gland of transgenic rabbits,” Gene, vol. 149, no. 2, pp. 351–355, 1994. View at Publisher · View at Google Scholar · View at Scopus
  53. E. Wolf, P. M. Jehle, M. M. Weber et al., “Human insulin-like growth factor I (IGF-I) produced in the mammary glands of transgenic rabbits: yield, receptor binding, mitogenic activity, and effects on IGF-binding proteins,” Endocrinology, vol. 138, no. 1, pp. 307–313, 1997. View at Publisher · View at Google Scholar · View at Scopus
  54. N. Zinovieva, C. Lassnig, D. Schams et al., “Stable production of human insulin-like growth factor 1 (IGF-1) in the milk of hemi- and homozygous transgenic rabbits over several generations,” Transgenic Research, vol. 7, no. 6, pp. 437–447, 1998. View at Publisher · View at Google Scholar · View at Scopus
  55. S. Coulibaly, U. Besenfelder, M. Fleischmann et al., “Human nerve growth factor beta (hNGF-β): mammary gland specific expression and production in transgenic rabbits,” FEBS Letters, vol. 444, no. 1, pp. 111–116, 1999. View at Publisher · View at Google Scholar · View at Scopus
  56. B. Xiao, Q. W. Li, B. Feng et al., “High-level expression of recombinant human nerve growth factor beta in milk of nontransgenic rabbits,” Journal of Bioscience and Bioengineering, vol. 105, no. 4, pp. 327–334, 2008. View at Publisher · View at Google Scholar · View at Scopus
  57. E. Riego, J. Limonta, A. Aguilar et al., “Production of transgenic mice and rabbits that carry and express the human tissue plasminogen activator cDNA under the control of a bovine alpha S1 casein promoter,” Theriogenology, vol. 39, no. 5, pp. 1173–1185, 1993. View at Google Scholar · View at Scopus
  58. G. Brem, U. Besenfelder, N. Zinovieva et al., “Mammary gland-specific expression of chymosin constructs in transgenic rabbits,” Theriogenology, vol. 43, no. 1, p. 175, 1995. View at Google Scholar
  59. S. Coulibaly, U. Besenfelder, I. Miller et al., “Expression and characterization of functional recombinant bovine follicle-stimulating hormone (boFSHalpha/beta) produced in the milk of transgenic rabbits,” Molecular Reproduction and Development, vol. 63, no. 3, pp. 300–308, 2002. View at Google Scholar
  60. C. Galet, C. M. Le Bourhis, M. Chopineau et al., “Expression of a single βα chain protein of equine LH/CG in milk of transgenic rabbits and its biological activity,” Molecular and Cellular Endocrinology, vol. 174, no. 1-2, pp. 31–40, 2001. View at Publisher · View at Google Scholar · View at Scopus
  61. C. McKee, A. Gibson, M. Dalrymple, L. Emslie, I. Garner, and I. Cottingham, “Production of biologically active salmon calcitonin in the milk of transgenic rabbits,” Nature Biotechnology, vol. 16, no. 7, pp. 647–651, 1998. View at Publisher · View at Google Scholar · View at Scopus
  62. S. Dragin, L. Chrastinova, A. Makarevich, and P. Chrenek, “Production of recombinant human protein C in the milk of transgenic rabbits from the F3 generation,” Folia Biologica, vol. 53, no. 3-4, pp. 129–132, 2005. View at Google Scholar · View at Scopus
  63. L. Bodrogi, R. Brands, W. Raaben et al., “High level expression of tissue nonspecific alkaline phosphatase in the milk of transgenic rabbits,” Transgenic Research, vol. 15, no. 5, pp. 627–636, 2006. View at Google Scholar
  64. Z. S. Han, Q. W. Li, Z. Y. Zhang et al., “Adenoviral vector mediates high expression levels of human lactoferrin in the milk of rabbits,” Journal of Microbiology and Biotechnology, vol. 18, no. 1, pp. 153–159, 2008. View at Google Scholar
  65. I. M. Khodarovich, N. E. Vorob'eva, M. N. Mezina, M. V. Piniugina, M. I. Prokof'ev, and O. A. Larionov, “Expression of human interferon beta in the mammary gland of transgenic rabbits,” Bioorganicheskaia khimiia, vol. 34, no. 2, pp. 185–193, 2008. View at Google Scholar · View at Scopus
  66. H. Yang, Q. W. Li, Z. S. Han, and J. H. Hu, “High level expression of recombinant human antithrombin in the mammary gland of rabbits by adenoviral vectors infection,” Animal Biotechnology, vol. 23, no. 2, pp. 89–100, 2012. View at Google Scholar
  67. R. K. Paleyanda, W. H. Velander, T. K. Lee et al., “Transgenic pigs produce functional human factor VIII in milk,” Nature Biotechnology, vol. 15, no. 10, pp. 971–1005, 1997. View at Google Scholar
  68. T. Edmunds, S. M. Van Patten, J. Pollock et al., “Transgenicaily produced human antithrombin: structural and functional comparison to human plasma-derived antithrombin,” Blood, vol. 91, no. 12, pp. 4561–4571, 1998. View at Google Scholar · View at Scopus
  69. R. R. Moura, L. M. Melo, and V. J. F. Freitas, “Production of recombinant proteins in milk of transgenic and non-transgenic goats braz,” Brazilian Archives of Biology and Technology, vol. 54, no. 5, pp. 927–938, 2011. View at Google Scholar
  70. G. J. Platenburg, E. P. A. Kootwijk, P. M. Kooiman et al., “Expression of human lactoferrin in milk of transgenic mice,” Transgenic Research, vol. 3, no. 2, pp. 99–108, 1994. View at Google Scholar · View at Scopus
  71. J. Zhang, L. Li, Y. Cai et al., “Expression of active recombinant human lactoferrin in the milk of transgenic goats,” Protein Expression and Purification, vol. 57, no. 2, pp. 127–135, 2008. View at Publisher · View at Google Scholar · View at Scopus
  72. E. Rokkones, S. H. Fromm, B. N. Kareem et al., “Human parathyroid hormone as a secretory peptide in milk of transgenic mice,” Journal of Cellular Biochemistry, vol. 59, no. 2, pp. 168–176, 1995. View at Publisher · View at Google Scholar · View at Scopus
  73. M. H. Parker, E. Birck-Wilson, G. Allard et al., “Purification and characterization of a recombinant version of human α-fetoprotein expressed in the milk of transgenic goats,” Protein Expression and Purification, vol. 38, no. 2, pp. 177–183, 2004. View at Publisher · View at Google Scholar · View at Scopus
  74. E. A. Maga, C. F. Shoemaker, J. D. Rowe, R. H. BonDurant, G. B. Anderson, and J. D. Murray, “Production and processing of milk from transgenic goats expressing human lysozyme in the mammary gland,” Journal of Dairy Science, vol. 89, no. 2, pp. 518–524, 2006. View at Google Scholar · View at Scopus
  75. Y. J. Huang, Y. Huang, H. Baldassarre et al., “Recombinant human butyrylcholinesterase from milk of transgenic animals to protect against organophosphate poisoning,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 34, pp. 13603–13608, 2007. View at Publisher · View at Google Scholar · View at Scopus
  76. K. Jim, “First US approval for a transgenic animal drug,” Nature Biotechnology, vol. 27, no. 4, pp. 302–304, 2009. View at Google Scholar
  77. C. Adiguzel, O. Iqbal, M. Demir, and J. Fareed, “European community and US-FDA approval of recombinant human antithrombin produced in genetically altered goats,” Clinical and Applied Thrombosis/Hemostasis, vol. 15, no. 6, pp. 645–651, 2009. View at Google Scholar · View at Scopus
  78. J. Fan and T. Watanabe, “Transgenic rabbits as therapeutic protein bioreactors and human disease models,” Pharmacology and Therapeutics, vol. 99, no. 3, pp. 261–282, 2003. View at Publisher · View at Google Scholar · View at Scopus
  79. Z. Bosze, L. Hiripi, J. W. Carnwath, and H. Niemann, “The transgenic rabbit as model for human diseases and as a source of biologically active recombinant proteins,” Transgenic Research, vol. 12, no. 5, pp. 541–553, 2003. View at Publisher · View at Google Scholar · View at Scopus
  80. B. Loftus and M. Rogers, “Characterization of a prion protein (PrP) gene from rabbit; A species with apparent resistance to infection by prions,” Gene, vol. 184, no. 2, pp. 215–219, 1997. View at Publisher · View at Google Scholar · View at Scopus
  81. K. Subbarao, A. Klimov, J. Katz et al., “Characterization of an avian influenza A (H5N1) virus isolated from a child with a fatal respiratory illness,” Science, vol. 279, no. 5349, pp. 393–406, 1998. View at Publisher · View at Google Scholar · View at Scopus
  82. H. D. Van Hout, A. J. J. Reuser, A. G. Vulto, M. Christa B Loonen, A. Cromme-Dijkhuis, and A. T. van der Ploeg, “Recombinant human α-glucosidase from rabbit milk in Pompe patients,” The Lancet, vol. 356, no. 9227, pp. 397–398, 2000. View at Google Scholar · View at Scopus
  83. J. M. P. van den Hout, A. J. J. Reuser, J. B. C. De Klerk, W. F. Arts, J. A. M. Smeitink, and A. T. van der Ploeg, “Enzyme therapy for Pompe disease with recombinant human α-glucosidase from rabbit milk,” Journal of Inherited Metabolic Disease, vol. 24, no. 2, pp. 266–274, 2001. View at Publisher · View at Google Scholar · View at Scopus