Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2013, Article ID 623789, 11 pages
http://dx.doi.org/10.1155/2013/623789
Research Article

Intraperitoneal Exposure to Nano/Microparticles of Fullerene () Increases Acetylcholinesterase Activity and Lipid Peroxidation in Adult Zebrafish (Danio rerio) Brain

1Laboratório de Biologia Genômica e Molecular, Faculdade de Biociências, Pontifícia Universidade Católica do Rio Grande do Sul, Avenida Ipiranga 6681 Sala 134, 90619-900 Porto Alegre, RS, Brazil
2Instituto Nacional de Ciência e Tecnologia Translacional em Medicina (INCT-TM), 90035-003 Porto Alegre, RS, Brazil
3Universidade Federal do Rio Grande-FURG, Instituto de Ciências Biológicas (ICB), Avenida Itália Km 8 s/n, 96208-900 Rio Grande, RS, Brazil
4Programa de Pós-Graduação em Ciências Fisiológicas-Fisiologia Animal Comparada, FURG, Avenida Itália Km 8 s/n, 96208-900 Rio Grande, RS, Brazil
5Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Avenida Ipiranga 2752, 90610-000 Porto Alegre, RS, Brazil
6Laboratório de Neuroquímica e Psicofarmacologia, Faculdade de Biociências, Pontifícia Universidade Católica do Rio Grande do Sul, Avenida Ipiranga 6681, 90619-900 Porto Alegre, RS, Brazil
7Instituto Nacional de Ciência e Tecnologia de Nanomateriais de Carbono, 31270-901 Belo Horizonte, MG, Brazil

Received 5 April 2013; Accepted 29 May 2013

Academic Editor: Qaisar Mahmood

Copyright © 2013 Gonzalo Ogliari Dal Forno et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Even though technologies involving nano/microparticles have great potential, it is crucial to determine possible toxicity of these technological products before extensive use. Fullerenes C60 are nanomaterials with unique physicochemical and biological properties that are important for the development of many technological applications. The aim of this study was to evaluate the consequences of nonphotoexcited fullerene C60 exposure in brain acetylcholinesterase expression and activity, antioxidant responses, and oxidative damage using adult zebrafish as an animal model. None of the doses tested (7.5, 15, and 30 mg/kg) altered AChE activity, antioxidant responses, and oxidative damage when zebrafish were exposed to nonphotoexcited C60 nano/microparticles during 6 and 12 hours. However, adult zebrafish exposed to the 30 mg/kg dose for 24 hours have shown enhanced AChE activity and augmented lipid peroxidation (TBARS assays) in brain. In addition, the up-regulation of brain AChE activity was neither related to the transcriptional control (RT-qPCR analysis) nor to the direct action of nonphotoexcited C60 nano/microparticles on the protein (in vitro results) but probably involved a posttranscriptional or posttranslational modulation of this enzymatic activity. Taken together these findings provided further evidence of toxic effects on brain after C60 exposure.