Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2013, Article ID 623789, 11 pages
http://dx.doi.org/10.1155/2013/623789
Research Article

Intraperitoneal Exposure to Nano/Microparticles of Fullerene () Increases Acetylcholinesterase Activity and Lipid Peroxidation in Adult Zebrafish (Danio rerio) Brain

1Laboratório de Biologia Genômica e Molecular, Faculdade de Biociências, Pontifícia Universidade Católica do Rio Grande do Sul, Avenida Ipiranga 6681 Sala 134, 90619-900 Porto Alegre, RS, Brazil
2Instituto Nacional de Ciência e Tecnologia Translacional em Medicina (INCT-TM), 90035-003 Porto Alegre, RS, Brazil
3Universidade Federal do Rio Grande-FURG, Instituto de Ciências Biológicas (ICB), Avenida Itália Km 8 s/n, 96208-900 Rio Grande, RS, Brazil
4Programa de Pós-Graduação em Ciências Fisiológicas-Fisiologia Animal Comparada, FURG, Avenida Itália Km 8 s/n, 96208-900 Rio Grande, RS, Brazil
5Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Avenida Ipiranga 2752, 90610-000 Porto Alegre, RS, Brazil
6Laboratório de Neuroquímica e Psicofarmacologia, Faculdade de Biociências, Pontifícia Universidade Católica do Rio Grande do Sul, Avenida Ipiranga 6681, 90619-900 Porto Alegre, RS, Brazil
7Instituto Nacional de Ciência e Tecnologia de Nanomateriais de Carbono, 31270-901 Belo Horizonte, MG, Brazil

Received 5 April 2013; Accepted 29 May 2013

Academic Editor: Qaisar Mahmood

Copyright © 2013 Gonzalo Ogliari Dal Forno et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. ISO/TC 229, http://www.iso.org/iso/iso_technical_committee?commid=381983.
  2. Project on Emerging Nanotechnologies, http://www.nanotechproject.org/inventories/consumer.
  3. G. Oberdörster, E. Oberdörster, and J. Oberdörster, “Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles,” Environmental Health Perspectives, vol. 113, no. 7, pp. 823–839, 2005. View at Publisher · View at Google Scholar
  4. A. Kahru and H. Dubourguier, “From ecotoxicology to nanoecotoxicology,” Toxicology, vol. 269, no. 2-3, pp. 105–119, 2010. View at Publisher · View at Google Scholar · View at Scopus
  5. H. W. Kroto, J. R. Heath, S. C. O'Brien, R. F. Curl, and R. E. Smalley, “C60: buckminsterfullerene,” Nature, vol. 318, no. 6042, pp. 162–163, 1985. View at Publisher · View at Google Scholar · View at Scopus
  6. M. Prato, “[60]Fullerene chemistry for materials science applications,” Journal of Materials Chemistry, vol. 7, no. 7, pp. 1097–1109, 1997. View at Google Scholar · View at Scopus
  7. A. Montellano, T. Da Ros, A. Bianco, and M. Prato, “Fullerene C60 as a multifunctional system for drug and gene delivery,” Nanoscale, vol. 3, no. 10, pp. 4035–4041, 2011. View at Publisher · View at Google Scholar · View at Scopus
  8. J. Kolosnjaj, H. Szwarc, and F. Moussa, “Toxicity studies of fullerenes and derivatives,” Advances in Experimental Medicine and Biology, vol. 620, pp. 168–180, 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. C. M. Sayes, A. M. Gobin, K. D. Ausman, J. Mendez, J. L. West, and V. L. Colvin, “Nano-C60 cytotoxicity is due to lipid peroxidation,” Biomaterials, vol. 26, no. 36, pp. 7587–7595, 2005. View at Publisher · View at Google Scholar · View at Scopus
  10. E. Oberdörster, “Manufactured nanomaterials (fullerenes, C60) induce oxidative stress in the brain of juvenile largemouth bass,” Environmental Health Perspectives, vol. 112, no. 10, pp. 1058–1062, 2004. View at Google Scholar · View at Scopus
  11. N. Shinohara, T. Matsumoio, M. Gamo et al., “Is lipid peroxidation induced by the aqueous suspension of fullerene C60 nanoparticles in the brains of Cyprinus carpio?” Environmental Science and Technology, vol. 43, no. 3, pp. 948–953, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. H. Soreq and S. Seidman, “Acetylcholinesterase—new roles for an old actor,” Nature Reviews Neuroscience, vol. 2, no. 4, pp. 294–302, 2001. View at Publisher · View at Google Scholar · View at Scopus
  13. P. P. Hernández and M. L. Allende, “Zebrafish (Danio rerio) as a model for studying the genetic basis of copper toxicity, deficiency, and metabolism,” The American Journal of Clinical Nutrition, vol. 88, no. 3, pp. 835S–839S, 2008. View at Google Scholar · View at Scopus
  14. C. Bertrand, A. Chatonnet, C. Takke et al., “Zebrafish acetylcholinesterase is encoded by a single gene localized on linkage group 7. Gene structure and polymorphism; molecular forms and expression pattern during development,” The Journal of Biological Chemistry, vol. 276, no. 1, pp. 464–474, 2001. View at Publisher · View at Google Scholar · View at Scopus
  15. J. S. van Dyk and B. Pletschke, “Review on the use of enzymes for the detection of organochlorine, organophosphate and carbamate pesticides in the environment,” Chemosphere, vol. 82, no. 3, pp. 291–307, 2011. View at Publisher · View at Google Scholar · View at Scopus
  16. E. P. Rico, D. B. Rosemberg, M. R. Senger et al., “Methanol alters ecto-nucleotidases and acetylcholinesterase in zebrafish brain,” Neurotoxicology and Teratology, vol. 28, no. 4, pp. 489–496, 2006. View at Publisher · View at Google Scholar · View at Scopus
  17. S. K. Richetti, D. B. Rosemberg, J. Ventura-Lima, J. M. Monserrat, M. R. Bogo, and C. D. Bonan, “Acetylcholinesterase activity and antioxidant capacity of zebrafish brain is altered by heavy metal exposure,” NeuroToxicology, vol. 32, no. 1, pp. 116–122, 2011. View at Publisher · View at Google Scholar · View at Scopus
  18. J. M. Monserrat, J. S. Yunes, and A. Bianchini, “Effects of Anabaena spiroides (cyanobacteria) aqueous extracts on the acetylcholinesterase activity of aquatic species,” Environmental Toxicology and Chemistry, vol. 20, no. 6, pp. 1228–1235, 2001. View at Google Scholar · View at Scopus
  19. V. M. Pereira, J. W. Bortolotto, L. W. Kist et al., “Endosulfan exposure inhibits brain AChE activity and impairs swimming performance in adult zebrafish (Danio rerio),” NeuroToxicology, vol. 33, no. 3, pp. 469–475, 2012. View at Publisher · View at Google Scholar · View at Scopus
  20. M. R. Senger, K. J. Seibt, G. C. Ghisleni, R. D. Dias, M. R. Bogo, and C. D. Bonan, “Aluminum exposure alters behavioral parameters and increases acetylcholinesterase activity in zebrafish (Danio rerio) brain,” Cell Biology and Toxicology, vol. 27, no. 3, pp. 199–205, 2011. View at Publisher · View at Google Scholar · View at Scopus
  21. E. P. Rico, D. B. Rosemberg, R. D. Dias, M. R. Bogo, and C. D. Bonan, “Ethanol alters acetylcholinesterase activity and gene expression in zebrafish brain,” Toxicology Letters, vol. 174, no. 1–3, pp. 25–30, 2007. View at Publisher · View at Google Scholar · View at Scopus
  22. R. Tang, A. Dodd, D. Lai, W. C. McNabb, and D. R. Love, “Validation of zebrafish (Danio rerio) reference genes for quantitative real-time RT-PCR normalization,” Acta Biochimica et Biophysica Sinica, vol. 39, no. 5, pp. 384–390, 2007. View at Publisher · View at Google Scholar · View at Scopus
  23. C. W. Isaacson, C. Y. Usenko, R. L. Tanguay, and J. A. Field, “Quantification of fullerenes by LC/ESI-MS and its application to in vivo toxicity assays,” Analytical Chemistry, vol. 79, no. 23, pp. 9091–9097, 2007. View at Publisher · View at Google Scholar · View at Scopus
  24. K. T. Kim, M. H. Jang, J. Y. Kim, and S. D. Kim, “Effect of preparation methods on toxicity of fullerene water suspensions to Japanese medaka embryos,” Science of the Total Environment, vol. 408, no. 22, pp. 5606–5612, 2010. View at Publisher · View at Google Scholar · View at Scopus
  25. Z. Ji, D. Zhang, L. Li et al., “The hepatotoxicity of multi-walled carbon nanotubes in mice,” Nanotechnology, vol. 20, no. 44, Article ID 445101, 2009. View at Publisher · View at Google Scholar · View at Scopus
  26. D. Zhang, X. Deng, Z. Ji et al., “Long-term hepatotoxicity of polyethylene-glycol functionalized multi-walled carbon nanotubes in mice,” Nanotechnology, vol. 21, no. 17, Article ID 175101, 2010. View at Google Scholar · View at Scopus
  27. S. Clichici, T. Mocan, A. Filip et al., “Blood oxidative stress generation after intraperitoneal administration of functionalized single-walled carbon nanotubes in rats,” Acta Physiologica Hungarica, vol. 98, no. 2, pp. 231–241, 2011. View at Publisher · View at Google Scholar · View at Scopus
  28. K. A. Kusters, J. G. Wijers, and D. Thoenes, “Particle sizing by laser diffraction spectrometry in the anomalous regime,” Applied Optics, vol. 30, no. 33, pp. 4839–4847, 1991. View at Publisher · View at Google Scholar
  29. H. A. Phelps, D. L. Runft, and M. N. Neely, “Adult zebrafish model of streptococcal infection,” Current Protocols in Microbiology, vol. 9, p. 9D.1, 2009. View at Google Scholar · View at Scopus
  30. A. M. da Rocha, J. R. Ferreira, D. M. Barros et al., “Gene expression and biochemical responses in brain of zebrafish Danio rerio exposed to organic nanomaterials: carbon nanotubes (SWCNT) and fullerenol (C60(OH)18-22(OK4)),” Comparative Biochemistry and Physiology A, vol. 165, no. 4, pp. 460–467, 2013. View at Publisher · View at Google Scholar
  31. K. J. Seibt, R. D. L. Oliveira, E. P. Rico, R. D. Dias, M. R. Bogo, and C. D. Bonan, “Antipsychotic drugs inhibit nucleotide hydrolysis in zebrafish (Danio rerio) brain membranes,” Toxicology In Vitro, vol. 23, no. 1, pp. 78–82, 2009. View at Publisher · View at Google Scholar · View at Scopus
  32. A. M. Siebel, E. P. Rico, K. M. Capiotti et al., “In vitro effects of antiepileptic drugs on acetylcholinesterase and ectonucleotidase activities in zebrafish (Danio rerio) brain,” Toxicology In Vitro, vol. 24, no. 4, pp. 1279–1284, 2010. View at Publisher · View at Google Scholar · View at Scopus
  33. G. L. Ellman, K. D. Courtney, V. Andres Jr., and R. M. Featherstone, “A new and rapid colorimetric determination of acetylcholinesterase activity,” Biochemical Pharmacology, vol. 7, no. 2, pp. 88–95, 1961. View at Google Scholar · View at Scopus
  34. L. L. Amado, M. L. Garcia, P. B. Ramos et al., “A method to measure total antioxidant capacity against peroxyl radicals in aquatic organisms: application to evaluate microcystins toxicity,” Science of the Total Environment, vol. 407, no. 6, pp. 2115–2123, 2009. View at Publisher · View at Google Scholar · View at Scopus
  35. K. D. Oakes and G. J. van der Kraak, “Utility of the TBARS assay in detecting oxidative stress in white sucker (Catostomus commersoni) populations exposed to pulp mill effluent,” Aquatic Toxicology, vol. 63, no. 4, pp. 447–463, 2003. View at Publisher · View at Google Scholar · View at Scopus
  36. M. M. Bradford, “A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding,” Analytical Biochemistry, vol. 72, no. 1-2, pp. 248–254, 1976. View at Google Scholar · View at Scopus
  37. L. F. Rubin, “Toxicologic update of dimethyl sulfoxide,” Annals of the New York Academy of Sciences, vol. 411, pp. 6–10, 1983. View at Google Scholar · View at Scopus
  38. T. Yamada, D. Jung, R. Sawada, A. Matsuoka, R. Nakaoka, and T. Tsuchiya, “Effects intracerebral microinjection and intraperitoneal injection of [60]Fullerene on brain functions differ in rats,” Journal of Nanoscience and Nanotechnology, vol. 8, no. 8, pp. 3973–3980, 2008. View at Publisher · View at Google Scholar · View at Scopus
  39. A. A. Mokrushin, “Neurotoxic effects of fullerenes on the electrical activity of surviving sections of the rat brain olfactory cortex,” Doklady Biological Sciences, vol. 377, no. 1–6, pp. 122–124, 2001. View at Publisher · View at Google Scholar
  40. T. B. Henry, F. Menn, J. T. Fleming, J. Wilgus, R. N. Compton, and G. S. Sayler, “Attributing effects of aqueous C60 nano-aggregates to tetrahydrofuran decomposition products in larval zebrafish by assessment of gene expression,” Environmental Health Perspectives, vol. 115, no. 7, pp. 1059–1065, 2007. View at Publisher · View at Google Scholar · View at Scopus
  41. X. Zhu, L. Zhu, Y. Lang, and Y. Chen, “Oxidative stress and growth inhibition in the freshwater fish Carassius auratus induced by chronic exposure to sublethal fullerene aggregates,” Environmental Toxicology and Chemistry, vol. 27, no. 9, pp. 1979–1985, 2008. View at Publisher · View at Google Scholar · View at Scopus
  42. J. P. Kamat, T. P. A. Devasagayam, K. I. Priyadarsini, and H. Mohan, “Reactive oxygen species mediated membrane damage induced by fullerene derivatives and its possible biological implications,” Toxicology, vol. 155, no. 1–3, pp. 55–61, 2000. View at Publisher · View at Google Scholar · View at Scopus
  43. Y. Totsuka, T. Higuchi, T. Imai et al., “Genotoxicity of nano/microparticles in in vitro micronuclei, in vivo comet and mutation assay systems,” Particle and Fibre Toxicology, vol. 6, article 23, 2009. View at Publisher · View at Google Scholar
  44. P. Jani, G. W. Halbert, J. Langridge, and A. T. Florence, “Nanoparticle uptake by the rat gastrointestinal mucosa: quantitation and particle size dependency,” Journal of Pharmacy and Pharmacology, vol. 42, no. 12, pp. 821–826, 1990. View at Google Scholar · View at Scopus
  45. K. Sarlo, K. L. Blackburn, E. D. Clark et al., “Tissue distribution of 20 nm, 100 nm and 1000 nm fluorescent polystyrene latex nanospheres following acute systemic or acute and repeat airway exposure in the rat,” Toxicology, vol. 263, no. 2-3, pp. 117–126, 2009. View at Publisher · View at Google Scholar · View at Scopus
  46. P. Taylor and Z. Radić, “The cholinesterases: from genes to proteins,” Annual Review of Pharmacology and Toxicology, vol. 34, pp. 281–320, 1994. View at Google Scholar · View at Scopus
  47. F. Matsumura, Toxicology of Insecticides, Plenum Press, New York, NY, USA, 2nd edition, 1985.
  48. X. J. Zhang, L. Yang, Q. Zhao et al., “Induction of acetylcholinesterase expression during apoptosis in various cell types,” Cell Death and Differentiation, vol. 9, no. 8, pp. 790–800, 2002. View at Publisher · View at Google Scholar · View at Scopus
  49. H. Jiang and X. J. Zhang, “Acetylcholinesterase and apoptosis: a novel perspective for an old enzyme,” FEBS Journal, vol. 275, no. 4, pp. 612–617, 2008. View at Publisher · View at Google Scholar · View at Scopus
  50. L. W. Kist, D. B. Rosemberg, T. C. B. Pereira et al., “Microcystin-LR acute exposure increases AChE activity via transcriptional ache activation in zebrafish (Danio rerio) brain,” Comparative Biochemistry and Physiology C, vol. 155, no. 2, pp. 247–252, 2012. View at Publisher · View at Google Scholar · View at Scopus
  51. T. B. Henry, E. J. Petersen, and R. N. Compton, “Aqueous fullerene aggregates (nC60) generate minimal reactive oxygen species and are of low toxicity in fish: a revision of previous reports,” Current Opinion in Biotechnology, vol. 22, no. 4, pp. 533–537, 2011. View at Publisher · View at Google Scholar · View at Scopus
  52. C. Y. Usenko, S. L. Harper, and R. L. Tanguay, “Fullerene C60 exposure elicits an oxidative stress response in embryonic zebrafish,” Toxicology and Applied Pharmacology, vol. 229, no. 1, pp. 44–55, 2008. View at Publisher · View at Google Scholar · View at Scopus
  53. J. B. Melo, P. Agostinho, and C. R. Oliveira, “Involvement of oxidative stress in the enhancement of acetylcholinesterase activity induced by amyloid beta-peptide,” Neuroscience Research, vol. 45, no. 1, pp. 117–127, 2003. View at Publisher · View at Google Scholar · View at Scopus