Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2013, Article ID 678456, 5 pages
http://dx.doi.org/10.1155/2013/678456
Review Article

Role of Intracellular Ca2+ and Na+/Ca2+ Exchanger in the Pathogenesis of Contrast-Induced Acute Kidney Injury

1Division of Nephrology, Department of Internal Medicine, Renmin Hospital of Wuhan University, Wuhan 430060, China
2Division of Nephrology, Department of Internal Medicine, General Hospital of Tianjin Medical University, Tianjin 300052, China

Received 20 September 2013; Accepted 24 October 2013

Academic Editor: Michele Andreucci

Copyright © 2013 Dingping Yang and Dingwei Yang. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. H. Hou, D. A. Bushinsky, and J. B. Wish, “Hospital-acquired renal insufficiency: a prospective study,” American Journal of Medicine, vol. 74, no. 2, pp. 243–248, 1983. View at Google Scholar · View at Scopus
  2. I. Goldenberg and S. Matetzky, “Nephropathy induced by contrast media: pathogenesis, risk factors and preventive strategies,” Canadian Medical Association Journal, vol. 172, no. 11, pp. 1461–1471, 2005. View at Publisher · View at Google Scholar · View at Scopus
  3. Y. Itoh, T. Yano, T. Sendo, and R. Oishi, “Clinical and experimental evidence for prevention of acute renal failure induced by radiographic contrast media,” Journal of Pharmacological Sciences, vol. 97, no. 4, pp. 473–488, 2005. View at Publisher · View at Google Scholar · View at Scopus
  4. E. Ledneva, S. Karie, V. Launay-Vacher, N. Janus, and G. Deray, “Renal safety of gadolinium-based contrast media in patients with chronic renal insufficiency,” Radiology, vol. 250, no. 3, pp. 618–628, 2009. View at Publisher · View at Google Scholar · View at Scopus
  5. F. Gao, Y. J. Zhou, X. Zhu, Z. J. Wang, S. W. Yang, and H. Shen, “C-reactive protein and the risk of contrast-induced acute kidney injury in patients undergoing percutaneous coronary intervention,” American Journal of Nephrology, vol. 34, no. 3, pp. 203–210, 2011. View at Publisher · View at Google Scholar · View at Scopus
  6. W. Ling, N. Zhaohui, H. Ben et al., “Urinary IL-18 and NGAL as early predictive biomarkers in contrast-induced nephropathy after coronary angiography,” Nephron Clinical Practice, vol. 108, no. 3, pp. 176–181, 2008. View at Publisher · View at Google Scholar
  7. G. L. Bakris and J. C. Burnett Jr., “A role for calcium in radiocontrast-induced reductions in renal hemodynamics,” Kidney International, vol. 27, no. 2, pp. 465–468, 1985. View at Google Scholar · View at Scopus
  8. R. W. Katzberg, T. W. Morris, and F. A. Burgener, “Renal renin and hemodynamic responses to selective renal artery catheterization and angiography,” Investigative Radiology, vol. 12, no. 5, pp. 381–388, 1977. View at Google Scholar · View at Scopus
  9. A. Nygren, “Contrast media and regional renal blood flow. A study of the effects of ionic and non-ionic monomeric and dimeric contrast media in the rat,” Acta Radiologica, vol. 378, part 3, pp. 123–135, 1992. View at Google Scholar · View at Scopus
  10. P. Liss, A. Nygren, U. Olsson, H. R. Ulfendahl, and U. Erikson, “Effects of contrast media and mannitol on renal medullary blood flow and red cell aggregation in the rat kidney,” Kidney International, vol. 49, no. 5, pp. 1268–1275, 1996. View at Google Scholar · View at Scopus
  11. D. Russo, A. Testa, L. Della Volpe, and G. Sansone, “Randomised prospective study on renal effects of two different contrast media in humans: protective role of a calcium channel blocker,” Nephron, vol. 55, no. 3, pp. 254–257, 1990. View at Google Scholar · View at Scopus
  12. S. B. Duan, F. Y. Liu, J. A. Luo et al., “Nephrotoxicity of high- and low-osmolar contrast media: the protective role of amlodipine in a rat model,” Acta Radiologica, vol. 41, no. 5, pp. 503–507, 2000. View at Google Scholar · View at Scopus
  13. H. H. Neumayer, W. Junge, A. Kufner, and A. Wenning, “Prevention of radiocontrast-media-induced nephrotoxicity by the calcium channel blocker nitrendipine: a prospective randomised clinical trial,” Nephrology Dialysis Transplantation, vol. 4, no. 12, pp. 1030–1036, 1989. View at Google Scholar · View at Scopus
  14. D. W. Yang, D. P. Yang, R. H. Jia, and J. Tan, “Na+/Ca2+ exchange inhibitor, KB-R7943, attenuates contrast-induced acute kidney injury,” Journal of Nephrology, vol. 26, pp. 877–885, 2013. View at Google Scholar
  15. J. Karstoft, L. Bååth, I. Jansen, and L. Edvinsson, “Vasoconstriction of isolated arteries induced by angiographic contrast media. A comparison of ionic and non-ionic contrast media iso-osmolar with plasma,” Acta Radiologica, vol. 36, no. 3, pp. 312–316, 1995. View at Google Scholar · View at Scopus
  16. A. Pflueger, T. S. Larson, K. A. Nath, B. F. King, J. M. Gross, and F. G. Knox, “Role of adenosine in contrast media-induced acute renal failure in diabetes mellitus,” Mayo Clinic Proceedings, vol. 75, no. 12, pp. 1275–1283, 2000. View at Google Scholar · View at Scopus
  17. C. Bagnis, J. M. Idee, M. Dubois et al., “Role of endothelium-derived nitric oxide-endothelin balance in contrast medium-induced acute renal vasoconstriction in dogs,” Academic Radiology, vol. 4, no. 5, pp. 343–348, 1997. View at Google Scholar · View at Scopus
  18. C. Quintavalle, M. Brenca, F. De Micco et al., “In vivo and in vitro assessment of pathways involved in contrast media-induced renal cells apoptosis,” Cell Death and Disease, vol. 2, no. 5, article e155, 2011. View at Publisher · View at Google Scholar · View at Scopus
  19. D. P. Yang, R. H. Jia, G. H. Ding, and J. Zhang, “KB-R7943 decreased renal tubular cell apoptosis and p38 expression induced by contrast media,” Chinese Journal of Experimental Surgery, vol. 5, pp. 641–643, 2008 (Chinese). View at Google Scholar
  20. X. Gong, G. Celsi, K. Carlsson, S. Norgren, and M. Chen, “N-acetylcysteine amide protects renal proximal tubular epithelial cells against iohexol-induced apoptosis by blocking p38 MAPK and iNOS signaling,” American Journal of Nephrology, vol. 31, no. 2, pp. 178–188, 2010. View at Publisher · View at Google Scholar · View at Scopus
  21. M. Andreucci, G. Fuiano, P. Presta et al., “Radiocontrast media cause dephosphorylation of Akt and downstream signaling targets in human renal proximal tubular cells,” Biochemical Pharmacology, vol. 72, no. 10, pp. 1334–1342, 2006. View at Publisher · View at Google Scholar · View at Scopus
  22. D. P. Yang, D. W. Yang, R. H. Jia, and G. H. Ding, “Selective inhibition of reverse mode of Na+/Ca2+ exchanger attenuates contrast-induced cell injury,” American Journal of Nephrology, vol. 37, pp. 264–273, 2013. View at Publisher · View at Google Scholar
  23. D. P. Yang, R. H. Jia, G. H. Ding, and D. W. Yang, “Felodipine attenuates NRK52E cell injury induced by contrast media,” Herald of Medicine, vol. 27, no. 10, pp. 1153–1156, 2008 (Chinese). View at Google Scholar
  24. D. R. Wilson, P. E. Arnold, T. J. Burke, and R. W. Schrier, “Mitochondrial calcium accumulation and respiration in ischemic acute renal failure in the rat,” Kidney International, vol. 25, no. 3, pp. 519–526, 1984. View at Google Scholar · View at Scopus
  25. M. Carraro, W. Mancini, M. Artero et al., “Dose effect of nitrendipine on urinary enzymes and microproteins following non-ionic radiocontrast administration,” Nephrology Dialysis Transplantation, vol. 11, no. 3, pp. 444–448, 1996. View at Google Scholar · View at Scopus
  26. Z. Khoury, J. R. Schlicht, J. Como et al., “The effect of prophylactic nifedipine on renal function in patients administered contrast media,” Pharmacotherapy, vol. 15, no. 1 I, pp. 59–65, 1995. View at Google Scholar · View at Scopus
  27. B. Spangberg-Viklund, J. Berglund, T. Nikonoff, P. Nyberg, T. Skau, and R. Larsson, “Does prophylactic treatment with felodipine, a calcium antagonist, prevent low-osmolar contrast-induced renal dysfunction in hydrated diabetic and nondiabetic patients with normal or moderately reduced renal function?” Scandinavian Journal of Urology and Nephrology, vol. 30, no. 1, pp. 63–68, 1996. View at Google Scholar · View at Scopus
  28. K. D. Philipson, D. A. Nicoll, M. Ottolia et al., “The Na+/Ca2+ exchange molecule: an overview,” Annals of the New York Academy of Sciences, vol. 976, pp. 1–10, 2002. View at Google Scholar · View at Scopus
  29. M. Condrescu, K. Opuni, B. M. Hantash, and J. P. Reeves, “Cellular regulation of sodium-calcium exchange,” Annals of the New York Academy of Sciences, vol. 976, pp. 214–223, 2002. View at Google Scholar · View at Scopus
  30. D. A. Nicoll, S. Longoni, and K. D. Philipson, “Molecular cloning and functional expression of the cardiac sarcolemmal Na+-Ca2+ exchanger,” Science, vol. 250, no. 4980, pp. 562–565, 1990. View at Google Scholar · View at Scopus
  31. Z. Li, S. Matsuoka, L. V. Hryshko et al., “Cloning of the NCX2 isoform of the plasma membrane Na+-Ca2+ exchanger,” Journal of Biological Chemistry, vol. 269, no. 26, pp. 17434–17439, 1994. View at Google Scholar · View at Scopus
  32. D. A. Nicoll, B. D. Quednau, Z. Qui, Y. R. Xia, A. J. Lusis, and K. D. Philipson, “Cloning of a third mammalian Na+-Ca2+ exchanger, NCX3,” Journal of Biological Chemistry, vol. 271, no. 40, pp. 24914–24921, 1996. View at Publisher · View at Google Scholar · View at Scopus
  33. C. E. Magyar, K. E. White, R. Rojas, G. Apodaca, and P. A. Friedman, “Plasma membrane Ca2+-ATPase and NCX1 Na+/Ca2+ exchanger expression in distal convoluted tubule cells,” American Journal of Physiology—Renal Physiology, vol. 283, no. 1, pp. F29–F40, 2002. View at Google Scholar · View at Scopus
  34. J. Yamashita, M. Itoh, T. Kuro et al., “Pre- or post-ischemic treatment with a novel Na+/Ca2+ exchange inhibitor, KB-R7943, shows renal protective effects in rats with ischemic acute renal failure,” Journal of Pharmacology and Experimental Therapeutics, vol. 296, no. 2, pp. 412–419, 2001. View at Google Scholar · View at Scopus
  35. J. Yamashita, S. Kita, T. Iwamoto et al., “Attenuation of ischemia/reperfusion-induced renal injury in mice deficient in Na+/Ca2+ exchanger,” Journal of Pharmacology and Experimental Therapeutics, vol. 304, no. 1, pp. 284–293, 2003. View at Publisher · View at Google Scholar · View at Scopus
  36. D. P. Yang, R. H. Jia, G. H. Ding, D. W. Yang, and X. L. Xiong, “Reverse mode of Na+Ca2+ exchange inhibitor, KB-r7943 attenuates tubular epithelial cell apoptosis induced by contrast media,” Chinese Journal of Emergency Medicine, vol. 17, no. 7, pp. 713–716, 2008 (Chinese). View at Google Scholar · View at Scopus
  37. D. W. Yang, D. P. Yang, R. H. Jia, and S. Lin, “Effects of selective inhibition of reverse mode of Na+/Ca2+ exchanger on rats with contrast-induced acute kidney injury,” National Medical Journal of China, vol. 93, no. 22, pp. 1750–1754, 2013 (Chinese). View at Google Scholar
  38. L. Yu, T. Netticadan, Y. J. Xu, V. Panagia, and N. S. Dhalla, “Mechanisms of lysophosphatidylcholine-induced increase in intracellular calcium in rat cardiomyocytes,” Journal of Pharmacology and Experimental Therapeutics, vol. 286, no. 1, pp. 1–8, 1998. View at Google Scholar · View at Scopus
  39. H. R. Cross, G. K. Radda, and K. Clarke, “The role of Na+/K+ ATPase activity during low flow ischemia in preventing myocardial injury: a 31P, 23Na and 87Rb NMR spectroscopic study,” Magnetic Resonance in Medicine, vol. 34, no. 5, pp. 673–685, 1995. View at Publisher · View at Google Scholar · View at Scopus
  40. W. Scholz, U. Albus, H. J. Lang et al., “Hoe 694, a new Na+/H+ exchange inhibitor and its effects in cardiac ischaemia,” British Journal of Pharmacology, vol. 109, no. 2, pp. 562–568, 1993. View at Google Scholar · View at Scopus