Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2013 (2013), Article ID 694075, 12 pages
Clinical Study

Abacus Training Modulates the Neural Correlates of Exact and Approximate Calculations in Chinese Children: An fMRI Study

1Bio-X Laboratory, Department of Physics, Zhejiang University, 38 Zheda Road, Hangzhou 310027, China
2Department of Nuclear Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, 38 Zheda Road, Hangzhou 310009, China
3Zhejiang University Medical PET Center, Zhejiang University, 38 Zheda Road, Hangzhou 310009, China
4Institute of Nuclear Medicine and Molecular Imaging, Zhejiang University, 38 Zheda Road, Hangzhou 310009, China
5Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou 310009, China

Received 26 July 2013; Accepted 12 September 2013

Academic Editor: Ignasi Carrio

Copyright © 2013 Fenglei Du et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


Exact (EX) and approximate (AP) calculations rely on distinct neural circuits. However, the training effect on the neural correlates of EX and AP calculations is largely unknown, especially for the AP calculation. Abacus-based mental calculation (AMC) is a particular arithmetic skill that can be acquired by long-term abacus training. The present study investigated whether and how the abacus training modulates the neural correlates of EX and AP calculations by functional magnetic resonance imaging (fMRI). Neural activations were measured in 20 abacus-trained and 19 nontrained Chinese children during AP and EX calculation tasks. Our results demonstrated that: (1) in nontrained children, similar neural regions were activated in both tasks, while the size of activated regions was larger in AP than those in the EX; (2) in abacus-trained children, no significant difference was found between these two tasks; (3) more visuospatial areas were activated in abacus-trained children under the EX task compared to the nontrained. These results suggested that more visuospatial strategies were used by the nontrained children in the AP task compared to the EX; abacus-trained children adopted a similar strategy in both tasks; after long-term abacus training, children were more inclined to apply a visuospatial strategy during processing EX calculations.