Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2013 (2013), Article ID 716736, 9 pages
http://dx.doi.org/10.1155/2013/716736
Research Article

Formulation Development and Stability Studies of Norfloxacin Extended-Release Matrix Tablets

1Post Graduation Program in Pharmaceutical Sciences, Universidade Estadual do Centro Oeste (UNICENTRO), 85040-080 Guarapuava, PR, Brazil
2Post Graduation Program in Pharmacy, Health Science Centre, Federal University of Santa Catarina, Quality Control Laboratory, J/K 207, 88040-900 Florianópolis, SC, Brazil
3Laboratory of Quality Control and Pharmaceutical Analysis, Faculty of Pharmacy, Federal University of Rio de Janeiro, 27930-560 Macaé, RJ, Brazil

Received 25 April 2013; Revised 25 July 2013; Accepted 31 July 2013

Academic Editor: Fabio Sonvico

Copyright © 2013 Paulo Renato Oliveira et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. Siepmann and N. A. Peppas, “Modeling of drug release from delivery systems based on hydroxypropyl methylcellulose (HPMC),” Advanced Drug Delivery Reviews, vol. 48, no. 2-3, pp. 139–157, 2001. View at Publisher · View at Google Scholar · View at Scopus
  2. C. Ferrero and M. R. Jiménez-Castellanos, “The influence of carbohydrate nature and drying methods on the compaction properties and pore structure of new methyl methacrylate copolymers,” International Journal of Pharmaceutics, vol. 248, no. 1-2, pp. 157–171, 2002. View at Publisher · View at Google Scholar · View at Scopus
  3. F. Fichtner, G. Frenning, and G. Alderborn, “Drug release from compacted single inert matrix agglomerates,” Journal of Drug Delivery Science and Technology, vol. 17, no. 4, pp. 273–277, 2007. View at Google Scholar · View at Scopus
  4. P. Colombo, F. Sonvico, G. Colombo, and R. Bettini, “Novel platforms for oral drug delivery,” Pharmaceutical Research, vol. 26, no. 3, pp. 601–611, 2009. View at Publisher · View at Google Scholar · View at Scopus
  5. I. Fuertes, I. Caraballo, A. Miranda, and M. Millán, “Study of critical points of drugs with different solubilities in hydrophilic matrices,” International Journal of Pharmaceutics, vol. 383, no. 1-2, pp. 138–146, 2010. View at Publisher · View at Google Scholar · View at Scopus
  6. J. S. Park, J. Y. Shim, N. K. V. Truong et al., “A pharma-robust design method to investigate the effect of PEG and PEO on matrix tablets,” International Journal of Pharmaceutics, vol. 393, no. 1-2, pp. 79–87, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. S. Conti, L. Maggi, L. Segale et al., “Matrices containing NaCMC and HPMC. 2. Swelling and release mechanism study,” International Journal of Pharmaceutics, vol. 333, no. 1-2, pp. 143–151, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. H. Omidian and K. Park, “Swelling agents and devices in oral drug delivery,” Journal of Drug Delivery Science and Technology, vol. 18, no. 2, pp. 83–93, 2008. View at Google Scholar · View at Scopus
  9. S. Chirico, A. Dalmoro, G. Lamberti, G. Russo, and G. Titomanlio, “Analysis and modeling of swelling and erosion behavior for pure HPMC tablet,” Journal of Controlled Release, vol. 122, no. 2, pp. 181–188, 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. P. Colombo, R. Bettini, P. Santi, and N. A. Peppas, “Swellable matrices for controlled drug delivery: gel-layer behaviour, mechanisms and optimal performance,” Pharmaceutical Science and Technology Today, vol. 3, no. 6, pp. 198–204, 2000. View at Publisher · View at Google Scholar · View at Scopus
  11. P. Colombo, R. Bettini, P. Santi, A. De Ascentiis, and N. A. Peppas, “Analysis of the swelling and release mechanisms from drug delivery systems with emphasis on drug solubility and water transport,” Journal of Controlled Release, vol. 39, no. 2-3, pp. 231–237, 1996. View at Publisher · View at Google Scholar · View at Scopus
  12. R. Bettini, P. L. Catellani, P. Santi, G. Massimo, N. A. Peppas, and P. Colombo, “Translocation of drug particles in HPMC matrix gel layer: effect of drug solubility and influence on release rate,” Journal of Controlled Release, vol. 70, no. 3, pp. 383–391, 2001. View at Publisher · View at Google Scholar · View at Scopus
  13. S. Conti, L. Maggi, L. Segale et al., “Matrices containing NaCMC and HPMC. 1. Dissolution performance characterization,” International Journal of Pharmaceutics, vol. 333, no. 1-2, pp. 136–142, 2007. View at Publisher · View at Google Scholar · View at Scopus
  14. C. L. Li, L. G. Martini, J. L. Ford, and M. Roberts, “The use of hypromellose in oral drug delivery,” Journal of Pharmacy and Pharmacology, vol. 57, no. 5, pp. 533–546, 2005. View at Publisher · View at Google Scholar · View at Scopus
  15. K. C. Sung, P. R. Nixon, J. W. Skoug et al., “Effect of formulation variables on drug and polymer release from HPMC-based matrix tablets,” International Journal of Pharmaceutics, vol. 142, no. 1, pp. 53–60, 1996. View at Publisher · View at Google Scholar · View at Scopus
  16. M. Ghimire, L. A. Hodges, J. Band et al., “In-vitro and in-vivo erosion profiles of hydroxypropylmethylcellulose (HPMC) matrix tablets,” Journal of Controlled Release, vol. 147, no. 1, pp. 70–75, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. L. Maggi, R. Bruni, and U. Conte, “High molecular weight polyethylene oxides (PEOs) as an alternative to HPMC in controlled release dosage forms,” International Journal of Pharmaceutics, vol. 195, no. 1-2, pp. 229–238, 2000. View at Publisher · View at Google Scholar · View at Scopus
  18. N. Wu, L.-S. Wang, D. C.-W. Tan, S. M. Moochhala, and Y.-Y. Yang, “Mathematical modeling and in vitro study of controlled drug release via a highly swellable and dissoluble polymer matrix: polyethylene oxide with high molecular weights,” Journal of Controlled Release, vol. 102, no. 3, pp. 569–581, 2005. View at Publisher · View at Google Scholar · View at Scopus
  19. J. F. Pinto, K. F. Wunder, and A. Okoloekwe, “Evaluation of the potential use of poly(ethylene oxide) as tablet- and extrudate-forming material,” AAPS Journal, vol. 6, no. 2, pp. 1–10, 2004. View at Google Scholar · View at Scopus
  20. M. Dimitrov and N. Lambov, “Study of Verapamil hydrochloride release from compressed hydrophilic Polyox-Wsr tablets,” International Journal of Pharmaceutics, vol. 189, no. 1, pp. 105–111, 1999. View at Publisher · View at Google Scholar · View at Scopus
  21. J. Petrovic, S. Ibric, G. Betz, J. Parojcic, and Z. Duric, “Application of dynamic neural networks in the modeling of drug release from polyethylene oxide matrix tablets,” Search Results European Journal of Pharmaceutical Sciences, vol. 38, pp. 172–180, 2009. View at Google Scholar
  22. J. Heller, J. Barr, S. Y. Ng, K. S. Abdellauoi, and R. Gurny, “Poly(ortho esters): synthesis, characterization, properties and uses,” Advanced Drug Delivery Reviews, vol. 54, no. 7, pp. 1015–1039, 2002. View at Publisher · View at Google Scholar · View at Scopus
  23. A. M. Emmerson and A. M. Jones, “The quinolones: decades of development and use,” Journal of Antimicrobial Chemotherapy, vol. 51, no. 1, pp. 13–20, 2003. View at Google Scholar · View at Scopus
  24. F. Van Bambeke, J.-M. Michot, J. Van Eldere, and P. M. Tulkens, “Quinolones in 2005: an update,” Clinical Microbiology and Infection, vol. 11, no. 4, pp. 256–280, 2005. View at Publisher · View at Google Scholar · View at Scopus
  25. L. Mandell, M. Bergeron, T. Marrie, L. Nicolle, D. Scheifele, and S. Shafran, “Norfloxacin: a new quinolone,” Canadian Medical Association Journal, vol. 139, no. 4, pp. 305–307, 1988. View at Google Scholar · View at Scopus
  26. Noroxin tablets package insert, 2009, http://www.merck.com/product/usa/pi_circulars/n/noroxin/noroxin_pi.pdf.
  27. W.-H. Sheng, Y.-C. Chen, J.-T. Wang, S.-C. Chang, K.-T. Luh, and W.-C. Hsieh, “Emerging fluoroquinolone-resistance for common clinically important gram-negative bacteria in Taiwan,” Diagnostic Microbiology and Infectious Disease, vol. 43, no. 2, pp. 141–147, 2002. View at Publisher · View at Google Scholar · View at Scopus
  28. Z. Alexiou, M. Mouktaroudi, G. Koratzanis et al., “The significance of compliance for the success of antimicrobial prophylaxis in recurrent lower urinary tract infections: the Greek experience,” International Journal of Antimicrobial Agents, vol. 30, no. 1, pp. 40–43, 2007. View at Publisher · View at Google Scholar · View at Scopus
  29. R. Isturiz, “Global resistance trends and the potential impact on empirical therapy,” International Journal of Antimicrobial Agents, vol. 32, no. 4, pp. S201–S206, 2008. View at Publisher · View at Google Scholar · View at Scopus
  30. J. L. Martinez, A. Fajardo, L. Garmendia et al., “A global view of antibiotic resistance,” FEMS Microbiology Reviews, vol. 33, pp. 44–65, 2009. View at Google Scholar
  31. G. Taubes, “The bacteria fight back,” Science, vol. 321, no. 5887, pp. 356–361, 2008. View at Publisher · View at Google Scholar · View at Scopus
  32. UNITED STATES PHARMACOPEIA, The (USP), Convention, Rockville, Md, USA, 34 edition, 2011.
  33. Farmacopéia Brasileira, Atheneu, São Paulo, Brazil, 4 edition, 1988.
  34. P. R. Oliveira, L. S. Bernardi, C. Mendes, S. G. Cardoso, M. S. Sangoi, and M. A. S. Silva, “Liquid chromatographic determination of norfloxacin in extended-release tablets,” Journal of Chromatographic Science, vol. 47, no. 9, pp. 739–744, 2009. View at Google Scholar · View at Scopus
  35. World Health Organization, Annex 2: Stability Testing of Active Pharmaceutical Ingredients and Finished Pharmaceutical Products, vol. 953 of WHO Technical Report Series, 2009.
  36. BRAZIL, Agência Nacional de Vigilância Sanitária (ANVISA), Resolução- RE 1, de 29 de julho de 2005, Guia para a realização de estudos de estabilidade, Brasília, Brazil, 2005.
  37. ICH-International Conference on Harmonisation of technical requirements for registration of pharmaceuticals for human use, Stability testing: photostability testing of new drug substances and products, Q1B, 1996.
  38. P. Costa and J. M. S. Lobo, “Modeling and comparison of dissolution profiles,” European Journal of Pharmaceutical Sciences, vol. 13, pp. 123–133, 2001. View at Google Scholar
  39. T. Higuchi, “Mechanism of sustained-action medication. Theoretical analysis of rate of release of solid drugs dispersed in solid matrices,” Journal of Pharmaceutical Sciences, vol. 52, pp. 1145–1149, 1963. View at Google Scholar
  40. R. W. Korsmeyer, R. Gurny, E. M. Doelker, P. Buri, and N. A. Peppas, “Mechanism of solute release from porous hydrophilic polymers,” International Journal of Pharmaceutics, vol. 15, pp. 25–35, 1983. View at Google Scholar
  41. J. W. Moore and H. H. Flanner, “Mathematical comparison of dissolution profiles,” Pharmaceutical Technology, vol. 20, pp. 64–74, 1996. View at Google Scholar
  42. FDA Guidance for industry, “Dissolution testing of immediate release solid oral dosage forms,” US Department of Health and Human Services, CDER, 1997.
  43. M. Ruotsalainen, J. Heinämäki, H. Guo, N. Laitinen, and J. Yliruusi, “A novel technique for imaging film coating defects in the film-core interface and surface of coated tablets,” European Journal of Pharmaceutics and Biopharmaceutics, vol. 56, no. 3, pp. 381–388, 2003. View at Publisher · View at Google Scholar · View at Scopus
  44. S. García-Muñoz and D. S. Gierer, “Coating uniformity assessment for colored immediate release tablets using multivariate image analysis,” International Journal of Pharmaceutics, vol. 395, no. 1-2, pp. 104–113, 2010. View at Publisher · View at Google Scholar · View at Scopus
  45. H. Khan, J. T. Fell, and G. S. Macleod, “The influence of additives on the spreading coefficient and adhesion of a film coating formulation to a model tablet surface,” International Journal of Pharmaceutics, vol. 227, no. 1-2, pp. 113–119, 2001. View at Publisher · View at Google Scholar · View at Scopus
  46. A. Kalbag, C. Wassgren, S. Sumana Penumetcha, and J. D. Pérez-Ramos, “Inter-tablet coating variability: residence times in a horizontal pan coater,” Chemical Engineering Science, vol. 63, no. 11, pp. 2881–2894, 2008. View at Publisher · View at Google Scholar · View at Scopus
  47. M. Córdoba-Borrego, M. Córdoba-Díaz, and D. Córdoba-Diaz, “Validation of a high-performance liquid chromatographic method for the determination of norfloxacin and its application to stability studies (photo-stability study of norfloxacin),” Journal of Pharmaceutical and Biomedical Analysis, vol. 18, pp. 919–926, 1999. View at Google Scholar
  48. K. A. K. Musa and L. A. Eriksson, “Theoretical assessment of norfloxacin redox and photochemistry,” Journal of Physical Chemistry A, vol. 113, no. 40, pp. 10803–10810, 2009. View at Publisher · View at Google Scholar · View at Scopus
  49. P. L. Ritger and N. A. Peppas, “A simple equation for description of solute release II. Fickian and anomalous release from swellable devices,” Journal of Controlled Release, vol. 5, no. 1, pp. 37–42, 1987. View at Google Scholar · View at Scopus
  50. P. R. Oliveira, L. S. Bernardi, O. L. Strusi et al., “Assembled modules technology for site-specific prolonged delivery of norfloxacin,” International Journal of Pharmaceutics, vol. 405, no. 1-2, pp. 90–96, 2011. View at Publisher · View at Google Scholar · View at Scopus
  51. X. Zhao and K. Drlica, “Restricting the selection of antibiotic-resistant mutants: a general strategy derived from fluoroquinolone studies,” Clinical Infectious Diseases, vol. 33, no. 3, pp. S147–S156, 2001. View at Publisher · View at Google Scholar · View at Scopus
  52. D. A. Talan, K. G. Naber, J. Palou, and D. Elkharrat, “Extended-release ciprofloxacin (Cipro XR) for treatment of urinary tract infections,” International Journal of Antimicrobial Agents, vol. 23, no. 1, pp. S54–S66, 2004. View at Publisher · View at Google Scholar · View at Scopus
  53. P. Verze, F. Fusco, C. Imbimbo et al., “Efficacy and safety of ciprofloxacin XR 1000 mg once daily versus ciprofloxacin 500 mg twice daily in the treatment of complicated urinary tract infections,” European Urology Supplements, vol. 10, p. 163, 2011. View at Google Scholar
  54. F. M. E. Wagenlehner and K. G. Naber, “Treatment of bacterial urinary tract infections: presence and future,” European Urology, vol. 49, no. 2, pp. 235–244, 2006. View at Publisher · View at Google Scholar · View at Scopus