Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2013, Article ID 732650, 12 pages
http://dx.doi.org/10.1155/2013/732650
Research Article

Walking on a Tissue-Specific Disease-Protein-Complex Heterogeneous Network for the Discovery of Disease-Related Protein Complexes

MOE Key Laboratory of Bioinformatics and Bioinformatics Division, TNLIST/Department of Automation, Tsinghua University, FIT 1-107, Beijing 100084, China

Received 11 September 2013; Accepted 7 October 2013

Academic Editor: Xing-Ming Zhao

Copyright © 2013 Thibault Jacquemin and Rui Jiang. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. T. A. Manolio, “Genomewide association studies and assessment of the risk of disease,” The New England Journal of Medicine, vol. 363, no. 2, pp. 166–176, 2010. View at Publisher · View at Google Scholar · View at Scopus
  2. The Wellcome Trust Case Control Consortium, “Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls,” Nature, vol. 447, no. 7145, pp. 661–678, 2007. View at Publisher · View at Google Scholar · View at Scopus
  3. M. Choi, U. I. Scholl, W. Ji et al., “Genetic diagnosis by whole exome capture and massively parallel DNA sequencing,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 45, pp. 19096–19101, 2009. View at Publisher · View at Google Scholar · View at Scopus
  4. L. G. Biesecker, “Exome sequencing makes medical genomics a reality,” Nature Genetics, vol. 42, no. 1, pp. 13–14, 2010. View at Publisher · View at Google Scholar · View at Scopus
  5. G. B. Ehret, P. B. Munroe, K. M. Rice et al., “Genetic variants in novel pathways influence blood pressure and cardiovascular disease risk,” Nature, vol. 478, no. 7367, pp. 103–109, 2011. View at Google Scholar
  6. Y. Bromberg, “Chapter 15: disease gene prioritization,” PLoS Computational Biology, vol. 9, no. 4, Article ID e1002902, 2013. View at Publisher · View at Google Scholar
  7. Y. Chen, W. S. Zhang, M. X. Gan, and R. Jiang, “Constructing human phenome-interactome networks for the prioritization of candidate genes,” Statistics and Its Interface, vol. 5, no. 1, pp. 137–148, 2012. View at Google Scholar
  8. D. Altshuler, M. Daly, and L. Kruglyak, “Guilt by association,” Nature Genetics, vol. 26, no. 2, pp. 135–138, 2000. View at Publisher · View at Google Scholar · View at Scopus
  9. S. Aerts, D. Lambrechts, S. Maity et al., “Gene prioritization through genomic data fusion,” Nature Biotechnology, vol. 24, no. 5, pp. 537–544, 2006. View at Publisher · View at Google Scholar · View at Scopus
  10. X. Wu, R. Jiang, M. Q. Zhang, and S. Li, “Network-based global inference of human disease genes,” Molecular Systems Biology, vol. 4, no. 1, article 189, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. Y. Li and J. C. Patra, “Genome-wide inferring gene-phenotype relationship by walking on the heterogeneous network,” Bioinformatics, vol. 26, no. 9, Article ID btq108, pp. 1219–1224, 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. O. Vanunu, O. Magger, E. Ruppin, T. Shlomi, and R. Sharan, “Associating genes and protein complexes with disease via network propagation,” PLoS Computational Biology, vol. 6, no. 1, Article ID 1000641, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. X. Wu, Q. Liu, and R. Jiang, “Align human interactome with phenome to identify causative genes and networks underlying disease families,” Bioinformatics, vol. 25, no. 1, pp. 98–104, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. Y. Chen, T. Jiang, and R. Jiang, “Uncover disease genes by maximizing information flow in the phenome-interactome network,” Bioinformatics, vol. 27, no. 13, Article ID btr213, pp. i167–i176, 2011. View at Publisher · View at Google Scholar · View at Scopus
  15. K. Lage, E. O. Karlberg, Z. M. Størling et al., “A human phenome-interactome network of protein complexes implicated in genetic disorders,” Nature Biotechnology, vol. 25, no. 3, pp. 309–316, 2007. View at Publisher · View at Google Scholar · View at Scopus
  16. R. Jiang, M. X. Gan, and P. He, “Constructing a gene semantic similarity network for the inference of disease genes,” BMC Systems Biology, vol. 5, supplement 2, article S2, 2011. View at Publisher · View at Google Scholar
  17. W. Zhang, F. Sun, and R. Jiang, “Integrating multiple protein-protein interaction networks to prioritize disease genes: a bayesian regression approach,” BMC Bioinformatics, vol. 12, no. 1, article S11, 2011. View at Google Scholar · View at Scopus
  18. O. Magger, Y. Y. Waldman, E. Ruppin, and R. Sharan, “Enhancing the prioritization of disease-causing genes through tissue specific protein interaction networks,” PLoS Computational Biology, vol. 8, no. 9, Article ID e1002690, 2012. View at Google Scholar
  19. Y. Guan, D. Gorenshteyn, M. Burmeister et al., “Tissue-specific functional networks for prioritizing phenotype and disease genes,” PLoS Computational Biology, vol. 8, no. 9, Article ID e1002694, 2012. View at Google Scholar
  20. B. Jiang, J. Wang, J. Xiao, and Y. Wang, “Gene prioritization for type 2 diabetes in tissue-specific protein interaction networks,” Lecture Notes in Operations Research, vol. 11, pp. 319–328, 2009. View at Google Scholar
  21. A. D. D'Andrea, “The fanconi anemia/BRCA signaling pathway: disruption in cisplatin-sensitive ovarian cancers,” Cell Cycle, vol. 2, no. 4, pp. 290–292, 2003. View at Google Scholar · View at Scopus
  22. P. Yang, X. Li, M. Wu, C.-K. Kwoh, and S.-K. Ng, “Inferring gene-phenotype associations via global protein complex network propagation,” PLoS ONE, vol. 6, no. 7, Article ID e21502, 2011. View at Publisher · View at Google Scholar · View at Scopus
  23. M. A. van Driel, J. Bruggeman, G. Vriend, H. G. Brunner, and J. A. M. Leunissen, “A text-mining analysis of the human phenome,” European Journal of Human Genetics, vol. 14, no. 5, pp. 535–542, 2006. View at Publisher · View at Google Scholar · View at Scopus
  24. T. S. Keshava Prasad, R. Goel, K. Kandasamy et al., “Human protein reference database—2009 update,” Nucleic Acids Research, vol. 37, supplement 1, pp. D767–D772, 2009. View at Publisher · View at Google Scholar · View at Scopus
  25. A. I. Su, T. Wiltshire, S. Batalov et al., “A gene atlas of the mouse and human protein-encoding transcriptomes,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 16, pp. 6062–6067, 2004. View at Publisher · View at Google Scholar · View at Scopus
  26. A. Ruepp, B. Brauner, I. Dunger-Kaltenbach et al., “CORUM: the comprehensive resource of mammalian protein complexes,” Nucleic Acids Research, vol. 36, supplement 1, pp. D646–D650, 2008. View at Publisher · View at Google Scholar · View at Scopus
  27. S. Köhler, S. Bauer, D. Horn, and P. N. Robinson, “Walking the interactome for prioritization of candidate disease genes,” American Journal of Human Genetics, vol. 82, no. 4, pp. 949–958, 2008. View at Publisher · View at Google Scholar · View at Scopus
  28. K. Lage, N. T. Hansena, E. O. Karlberg et al., “A large-scale analysis of tissue-specific pathology and gene expression of human disease genes and complexes,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 52, pp. 20870–20875, 2008. View at Publisher · View at Google Scholar · View at Scopus
  29. R. Rentzsch and C. A. Orengo, “Protein function prediction—the power of multiplicity,” Trends in Biotechnology, vol. 27, no. 4, pp. 210–219, 2009. View at Publisher · View at Google Scholar · View at Scopus
  30. H. J. Lowe and G. O. Barnett, “Understanding and using the Medical Subject Headings (MeSH) vocabulary to perform literature searches,” Journal of the American Medical Association, vol. 271, no. 14, pp. 1103–1108, 1994. View at Publisher · View at Google Scholar · View at Scopus
  31. D. Smedley, S. Haider, B. Ballester et al., “BioMart—biological queries made easy,” BMC Genomics, vol. 10, no. 1, article 22, 2009. View at Publisher · View at Google Scholar · View at Scopus
  32. O. Bodenreider, “The Unified Medical Language System (UMLS): integrating biomedical terminology,” Nucleic Acids Research, vol. 32, supplement 1, pp. D267–D270, 2004. View at Google Scholar · View at Scopus
  33. P. N. Robinson, S. Köhler, S. Bauer, D. Seelow, D. Horn, and S. Mundlos, “The human phenotype ontology: a tool for annotating and analyzing human hereditary disease,” American Journal of Human Genetics, vol. 83, no. 5, pp. 610–615, 2008. View at Publisher · View at Google Scholar · View at Scopus
  34. A. Gottlieb, G. Y. Stein, E. Ruppin, and R. Sharan, “PREDICT: a method for inferring novel drug indications with application to personalized medicine,” Molecular Systems Biology, vol. 7, no. 1, article 496, 2011. View at Publisher · View at Google Scholar · View at Scopus