Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2013, Article ID 752817, 7 pages
Research Article

Interval and Continuous Exercise Training Produce Similar Increases in Skeletal Muscle and Left Ventricle Microvascular Density in Rats

1Laboratory of Cardiovascular Investigation, Oswaldo Cruz Institute, FIOCRUZ, 21040 900 Rio de Janeiro, RJ, Brazil
2Department of Physiology and Pharmacology, Fluminense Federal University, 24210 130 Niterói, RJ, Brazil
3Laboratory of Exercise Sciences, Biomedical Institute, Fluminense Federal University, Rua Professor Hernani Pires de Mello 1001, Sala 106, 24210 130 Niterói, RJ, Brazil

Received 5 October 2013; Revised 20 October 2013; Accepted 22 October 2013

Academic Editor: Antonio Crisafulli

Copyright © 2013 Flávio Pereira et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


Interval training (IT), consisting of alternated periods of high and low intensity exercise, has been proposed as a strategy to induce more marked biological adaptations than continuous exercise training (CT). The purpose of this study was to assess the effects of IT and CT with equivalent total energy expenditure on capillary skeletal and cardiac muscles in rats. Wistar rats ran on a treadmill for 30 min per day with no slope (0%), 4 times/week for 13 weeks. CT has constant load of 70% max; IT has cycles of 90% max for 1 min followed by 1 min at 50% max. CT and IT increased endurance and muscle oxidative capacity and attenuated body weight gain to a similar extent ( ). In addition, CT and IT similarly increased functional capillary density of skeletal muscle (CT: %; IT: %) and the capillary-to-fiber ratio in skeletal muscle (CT: %; IT: %) and in the left ventricle (CT: %; IT: %). In conclusion, at equivalent total work volumes, interval exercise training induced similar functional and structural alterations in the microcirculation of skeletal muscle and myocardium in healthy rats compared to continuous exercise training.