Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2013 (2013), Article ID 757126, 10 pages
Research Article

Hepatoprotective and Antioxidant Effects of Saponarin, Isolated from Gypsophila trichotoma Wend. on Paracetamol-Induced Liver Damage in Rats

1Laboratory of Drug Metabolism and Drug Toxicity, Department of Pharmacology, Pharmacotherapy and Toxicology, Faculty of Pharmacy, Medical University, 2 Dunav Street, 1000 Sofia, Bulgaria
2CFSAN, US FDA, 5100 Paint Branch, Parkway College Park, MD 20740, USA
3Department of Pharmacognosy, Faculty of Pharmacy, Medical University, 2 Dunav Street, 1000 Sofia, Bulgaria
4Department of Obstetrics, Gynecology, Biotechnology of Reproduction, Pathological Anatomy and Biochemistry, Faculty of Veterinary Medicine, University of Forestry, 10 Kliment Ohridski Boulevard, 1756 Sofia, Bulgaria

Received 20 April 2013; Revised 4 June 2013; Accepted 4 June 2013

Academic Editor: Bernd Schnabl

Copyright © 2013 Rumyana Simeonova et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


The hepatoprotective potential of saponarin, isolated from Gypsophila trichotoma, was evaluated in vitro/in vivo using a hepatotoxicity model of paracetamol-induced liver injury. In freshly isolated rat hepatocytes, paracetamol (100 μmol) led to a significant decrease in cell viability, increased LDH leakage, decreased levels of cellular GSH, and elevated MDA quantity. Saponarin (60–0.006 μg/mL) preincubation, however, significantly ameliorated paracetamol-induced hepatotoxicity in a concentration-dependent manner. The beneficial effect of saponarin was also observed in vivo. Rats were challenged with paracetamol alone (600 mg/kg, i.p.) and after 7-day pretreatment with saponarin (80 mg/kg, oral gavage). Paracetamol toxicity was evidenced by increase in MDA quantity and decrease in cell GSH levels and antioxidant defence system. No changes in phase I enzyme activities of AH and EMND and cytochrome P 450 quantity were detected. Saponarin pretreatment resulted in significant increase in cell antioxidant defence system and GSH levels and decrease in lipid peroxidation. The biochemical changes are in good correlation with the histopathological data. Protective activity of saponarin was similar to the activity of positive control silymarin. On the basis of these results, it can be concluded that saponarin exerts antioxidant and hepatoprotective activity against paracetamol liver injury in vitro/in vivo.