Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2013 (2013), Article ID 821678, 10 pages
http://dx.doi.org/10.1155/2013/821678
Review Article

Why Control Activity? Evolutionary Selection Pressures Affecting the Development of Physical Activity Genetic and Biological Regulation

Huffines Institute of Sports Medicine and Human Performance, Health and Kinesiology Department, Texas A&M University, 356 Blocker Building, 4243 TAMU, College Station, TX 77843, USA

Received 11 October 2013; Accepted 20 November 2013

Academic Editor: Jaakko Kaprio

Copyright © 2013 J. Timothy Lightfoot. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. T. W. Rowland, “The biological basis of physical activity,” Medicine and Science in Sports and Exercise, vol. 30, no. 3, pp. 392–399, 1998. View at Publisher · View at Google Scholar · View at Scopus
  2. A. M. C. P. Joosen, M. Gielen, R. Vlietinck, and K. R. Westerterp, “Genetic analysis of physical activity in twins,” American Journal of Clinical Nutrition, vol. 82, no. 6, pp. 1253–1259, 2005. View at Google Scholar · View at Scopus
  3. L. Perusse, A. Tremblay, C. Leblanc, and C. Bouchard, “Genetic and environmental influences on level of habitual physical activity and exercise participation,” American Journal of Epidemiology, vol. 129, no. 5, pp. 1012–1022, 1989. View at Google Scholar · View at Scopus
  4. J. T. Lightfoot, L. Leamy, D. Pomp et al., “Strain screen and haplotype association mapping of wheel running in inbred mouse strains,” Journal of Applied Physiology, vol. 109, no. 3, pp. 623–634, 2010. View at Publisher · View at Google Scholar · View at Scopus
  5. J. H. Stubbe, D. I. Boomsma, J. M. Vink et al., “Genetic influences on exercise participation in 37.051 twin pairs from seven countries,” PLoS ONE, vol. 1, no. 1, article e22, 2006. View at Publisher · View at Google Scholar · View at Scopus
  6. R. S. Bowen, D. P. Ferguson, and J. T. Lightfoot, “Effects of aromaase Inhibition on the physical activity levels of male mice,” Journal of Steroids & Hormonal Science, vol. 1, no. 1, pp. 1–7, 2011. View at Publisher · View at Google Scholar
  7. R. S. Bowen, A. M. Knab, A. T. Hamilton, J. R. McCall, T. L. Moore-Harrison, and J. T. Lightfoot, “Effects of supraphysiological doses of sex steroids on wheel running activity in mice,” Journal of Steroids & Hormonal Science, vol. 3, no. 2, article 110, 2012. View at Publisher · View at Google Scholar
  8. J. F. Gorzek, K. C. Hendrickson, J. P. Forstner, J. L. Rixen, A. L. Moran, and D. A. Lowe, “Estradiol and tamoxifen reverse ovariectomy-induced physical inactivity in mice,” Medicine and Science in Sports and Exercise, vol. 39, no. 2, pp. 248–256, 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. R. G. Hoskins, “The effect of castration on voluntary activity,” American Journal of Physiology, vol. 72, pp. 324–330, 1925. View at Google Scholar
  10. M. A. Morgan, J. Schulkin, and D. W. Pfaff, “Estrogens and non-reproductive behaviors related to activity and fear,” Neuroscience and Biobehavioral Reviews, vol. 28, no. 1, pp. 55–63, 2004. View at Publisher · View at Google Scholar · View at Scopus
  11. C. P. Richter, “Animal behavior and internal drives,” The Quarterly Review of Biology, vol. 2, no. 3, pp. 307–343, 1927. View at Publisher · View at Google Scholar
  12. J. R. Slonaker, “The effect of pubescence, oestruation and menopause on the voluntary activity in the albino rat,” American Journal of Physiology, vol. 68, pp. 294–315, 1924. View at Google Scholar
  13. T. Garland Jr., H. Schutz, M. A. Chappell et al., “The biological control of voluntary exercise, spontaneous physical activity and daily energy expenditure in relation to obesity: human and rodent perspectives,” Journal of Experimental Biology, vol. 214, no. 2, pp. 206–229, 2011. View at Publisher · View at Google Scholar · View at Scopus
  14. J. T. Lightfoot, “Can you be born a couch potato? The genomic regulation of physical activity,” in Exercise Genomics, L. S. Pescatello and S. M. Roth, Eds., pp. 45–72, Humana Press, New York, NY, USA, 2011. View at Google Scholar
  15. J. T. Lightfoot, “Current understanding of the genetic basis for physical activity,” Journal of Nutrition, vol. 141, no. 3, pp. 526–530, 2011. View at Publisher · View at Google Scholar · View at Scopus
  16. T. Moore-Harrison and J. T. Lightfoot, “Driven to be inactive? The genetics of physical activity,” Progress in Molecular Biology and Translational Science, vol. 94, pp. 271–290, 2010. View at Google Scholar · View at Scopus
  17. R. S. Bowen, M. J. Turner, and J. T. Lightfoot, “Sex hormone effects on physical activity levels: why doesn't jane run as much as dick?” Sports Medicine, vol. 41, no. 1, pp. 73–86, 2011. View at Publisher · View at Google Scholar · View at Scopus
  18. D. M. Bramble and D. E. Lieberman, “Endurance running and the evolution of Homo,” Nature, vol. 432, no. 7015, pp. 345–352, 2004. View at Publisher · View at Google Scholar · View at Scopus
  19. D. R. Carrier, “The energetic paradox of human running and hominid evolution,” Current Anthropology, vol. 25, no. 4, pp. 483–495, 1984. View at Publisher · View at Google Scholar
  20. J. T. Lightfoot, M. J. Turner, D. Pomp, S. R. Kleeberger, and L. J. Leamy, “Quantitative trait loci for physical activity traits in mice,” Physiological Genomics, vol. 32, no. 3, pp. 401–408, 2008. View at Publisher · View at Google Scholar · View at Scopus
  21. K. L. Andersen, J. Ilmarinen, and J. Rutenfranz, “Leisure time sport activities and maximal aerobic power during late adolescence,” European Journal of Applied Physiology and Occupational Physiology, vol. 52, no. 4, pp. 431–436, 1984. View at Google Scholar · View at Scopus
  22. L. B. Andersen and J. Haraldsdottir, “Coronary heart disease risk factors, physical activity, and fitness in young Danes,” Medicine and Science in Sports and Exercise, vol. 27, no. 2, pp. 158–163, 1995. View at Google Scholar · View at Scopus
  23. K. L. Lamb and D. A. Brodie, “Leisure-time physical activity as an estimate of physical fitness: a validation study,” Journal of Clinical Epidemiology, vol. 44, no. 1, pp. 41–52, 1991. View at Publisher · View at Google Scholar · View at Scopus
  24. D. R. Young and M. A. Steinhardt, “The importance of physical fitness versus physical activity for coronary artery disease risk factors: a cross-sectional analysis,” Research Quarterly for Exercise and Sport, vol. 64, no. 4, pp. 377–384, 1993. View at Google Scholar · View at Scopus
  25. J. R. J. Morrow and P. S. Freedson, “Relationship between habitual physical activity and aerobic fitness in adolescents,” Pediatric Exercise Science, vol. 6, no. 4, pp. 315–329, 1994. View at Google Scholar
  26. A. V. Rowlands, R. G. Eston, and D. K. Ingledew, “Relationship between activity levels, aerobic fitness, and body fat in 8- to 10-yr-old children,” Journal of Applied Physiology, vol. 86, no. 4, pp. 1428–1435, 1999. View at Google Scholar · View at Scopus
  27. L. Aires, P. Silva, G. Silva, M. P. Santos, J. C. Ribeiro, and J. Mota, “Intensity of physical activity, cardiorespiratory fitness, and body mass index in youth,” Journal of Physical Activity and Health, vol. 7, no. 1, pp. 54–59, 2010. View at Google Scholar · View at Scopus
  28. T. Moore-Harrison, A. Hamilton, A. Knab et al., “The relationship between aerobic capacity, body composition, and physical activity among ethnic groups,” in Proceedings of the Integrative Biology of Exercise Meeting V., 2008.
  29. W. A. Friedman, T. Garland Jr., and M. R. Dohm, “Individual variation in locomotor behavior and maximal oxygen consumption in mice,” Physiology and Behavior, vol. 52, no. 1, pp. 97–104, 1992. View at Publisher · View at Google Scholar · View at Scopus
  30. M. I. Lambert, C. van Zyl, R. Jaunky, E. V. Lambert, and T. D. Noakes, “Tests of running performance do not predict subsequent spontaneous running in rats,” Physiology and Behavior, vol. 60, no. 1, pp. 171–176, 1996. View at Publisher · View at Google Scholar · View at Scopus
  31. I. Lerman, B. C. Harrison, K. Freeman et al., “Genetic variability in forced and voluntary endurance exercise performance in seven inbred mouse strains,” Journal of Applied Physiology, vol. 92, no. 6, pp. 2245–2255, 2002. View at Google Scholar · View at Scopus
  32. J. T. Lightfoot, M. J. Turner, M. Daves, A. Vordermark, and S. R. Kleeberger, “Genetic influence on daily wheel running activity level,” Physiological Genomics, vol. 19, pp. 270–276, 2005. View at Publisher · View at Google Scholar · View at Scopus
  33. M. H. M. de Moor, Y.-J. Liu, D. I. Boomsma et al., “Genome-wide association study of exercise behavior in dutch and american adults,” Medicine and Science in Sports and Exercise, vol. 41, no. 10, pp. 1887–1895, 2009. View at Publisher · View at Google Scholar · View at Scopus
  34. C. Bouchard, T. Rankinen, Y. C. Chagnon et al., “Genomic scan for maximal oxygen uptake and its response to training in the HERITAGE Family study,” Journal of Applied Physiology, vol. 88, no. 2, pp. 551–559, 2004. View at Publisher · View at Google Scholar
  35. J. Rico-Sanz, T. Rankinen, T. Rice et al., “Quantitative trait loci for maximal exercise capacity phenotypes and their responses to training in the HERITAGE Family study,” Physiological Genomics, vol. 16, pp. 256–260, 2004. View at Publisher · View at Google Scholar · View at Scopus
  36. J. T. Lightfoot, M. J. Turner, A. K. Knab et al., “Quantitative trait loci associated with maximal exercise endurance in mice,” Journal of Applied Physiology, vol. 103, no. 1, pp. 105–110, 2007. View at Publisher · View at Google Scholar · View at Scopus
  37. S. M. Courtney and M. P. Massett, “Identification of exercise capacity QTL using association mapping in inbred mice,” Physiological Genomics, vol. 44, no. 19, pp. 948–955, 2012. View at Publisher · View at Google Scholar
  38. T. Garland Jr. and S. A. Kelly, “Phenotypic plasticity and experimental evolution,” Journal of Experimental Biology, vol. 209, no. 12, pp. 2344–2361, 2006. View at Publisher · View at Google Scholar · View at Scopus
  39. R. B. Lee, The Dobe Ju/'Hoansi, Wadsworth, 3rd edition, 2003.
  40. W. R. Leonard and M. L. Robertson, “Nutritional requirements and human evoltuion: a bioenergetics model,” American Journal of Human Biology, vol. 4, no. 2, pp. 179–195, 1992. View at Publisher · View at Google Scholar
  41. J. Woodburn, “An introduction to hadza ecology,” in Man the Hunter, R. Lee and I. DeVore, Eds., pp. 49–55, Aldine, Chicago, Ill, USA, 1968. View at Google Scholar
  42. H. Pontzer, D. A. Raichlen, B. M. Wood, A. Z. Mabulla, S. B. Racette, and F. W. Marlowe, “Hunter-gatherer energetics and human obesity,” PLoS ONE, vol. 7, no. 7, Article ID e40503, 2012. View at Publisher · View at Google Scholar
  43. K. R. Westerterp and J. R. Speakman, “Physical activity energy expenditure has not declined since the 1980s and matches energy expenditures of wild mammals,” International Journal of Obesity, vol. 32, no. 8, pp. 1256–1263, 2008. View at Publisher · View at Google Scholar · View at Scopus
  44. C. Panter-Brick, “Seasonality of energy expenditure during pregnancy and lactation for rural Nepali women,” American Journal of Clinical Nutrition, vol. 57, no. 5, pp. 620–628, 1993. View at Google Scholar · View at Scopus
  45. C. Panter-Brick, “Seasonal and sex variation in physical activity levels among agro-pastoralists in Nepal,” American Journal of Physical Anthropology, vol. 100, no. 1, pp. 7–21, 1996. View at Google Scholar · View at Scopus
  46. D. R. Bassett Jr., P. L. Schneider, and G. E. Huntington, “Physical activity in an old order Amish community,” Medicine and Science in Sports and Exercise, vol. 36, no. 1, pp. 79–85, 2004. View at Google Scholar · View at Scopus
  47. D. R. Bassett, H. R. Wyatt, H. Thompson, J. C. Peters, and J. O. Hill, “Pedometer-measured physical activity and health behaviors in U.S. adults,” Medicine and Science in Sports and Exercise, vol. 42, no. 10, pp. 1819–1825, 2010. View at Publisher · View at Google Scholar · View at Scopus
  48. M. P. Murray, A. B. Drought, and R. C. Kory, “Walking patterns of normal men,” The Journal of Bone and Joint Surgery, vol. 46, pp. 335–360, 1964. View at Google Scholar · View at Scopus
  49. M. P. Murray, R. C. Kory, and S. B. Sepic, “Walking patterns of normal women,” Archives of Physical Medicine and Rehabilitation, vol. 51, no. 11, pp. 637–650, 1970. View at Google Scholar · View at Scopus
  50. S. Gillepsie and G. McNeill, Food, Health and Survival in India and Developing Countries, Oxford University Press, New Delhi, India, 1992.
  51. M. Lawrence and R. G. Whitehead, “Physical activity and total energy expenditure of child-bearing Gambian village women,” European Journal of Clinical Nutrition, vol. 42, no. 2, pp. 145–160, 1988. View at Google Scholar · View at Scopus
  52. J. Singh, A. M. Prentice, E. Diaz et al., “Energy expenditure of Gambian women during peak agricultural activity measured by the doubly-labelled water method,” British Journal of Nutrition, vol. 62, no. 2, pp. 315–329, 1989. View at Google Scholar · View at Scopus
  53. T. Brun, F. Bleiberg, and S. Goihman, “Energy expenditure of male farmers in dry and rainy seasons in Upper-Volta,” British Journal of Nutrition, vol. 45, no. 1, pp. 67–75, 1981. View at Google Scholar · View at Scopus
  54. F. M. Bleiberg, T. A. Brun, S. Goihman, and E. Gouba, “Duration of activities and energy expenditure of female farmers in dry and rainy seasons in Upper-Volta,” British Journal of Nutrition, vol. 43, no. 1, pp. 71–82, 1980. View at Publisher · View at Google Scholar · View at Scopus
  55. K. B. Simondon, E. Benefice, F. Simondon, V. Delaunay, and A. Chahnazarian, “Seasonal variation in nutritional status of adults and children in rural Senegal,” in Seasonality and Human Ecology, S. J. Ulijaszek and S. S. Strickland, Eds., pp. 166–183, Cambridge University Press, 1993. View at Google Scholar
  56. G. McNeill, J. P. W. Rivers, P. R. Payne, J. J. de Britto, and R. Abel, “Basal metabolic rate of Indian men: no evidence of metabolic adaptation to a low plane of nutrition,” Human Nutrition, vol. 41, no. 6, pp. 473–483, 1987. View at Google Scholar · View at Scopus
  57. A. E. Dugdale and P. R. Payne, “A model of seasonal changes in energy balance,” Ecology of Food and Nutrition, vol. 19, no. 3, pp. 231–245, 1987. View at Publisher · View at Google Scholar
  58. R. H. Fox, A study of the energy expenditure of Africans engaged in various activities, with special references to some environmental and physiological factors which may influence the efficiency of their work [Ph.D. thesis], 1953.
  59. H. Kashiwazaki, Y. Dejima, J. Orias-Rivera, and W. A. Coward, “Energy expenditure determined by the doubly labeled water method in Bolivian Aymara living in a high altitude agropastoral community,” American Journal of Clinical Nutrition, vol. 62, no. 5, pp. 901–910, 1995. View at Google Scholar · View at Scopus
  60. P. W. Leslie, J. R. Bindon, and P. T. Baker, “Caloric requirements of human populations: a model,” Human Ecology, vol. 12, no. 2, pp. 137–162, 1984. View at Google Scholar · View at Scopus
  61. G. Cochran and H. Harpending, The 10,000 Year Explosion: How Civilization Accelerated Human Evolution, Basic Books/Perseus Books Group, New York, NY, USA, 2009.
  62. C. L. Goodrick, D. K. Ingram, and M. A. Reynolds, “Effects of intermittent feeding upon growth, activity, and lifespan in rats allowed voluntary exercise,” Experimental Aging Research, vol. 9, no. 3, pp. 203–209, 1983. View at Google Scholar · View at Scopus
  63. Y. Yamada, R. J. Colman, J. W. Kemnitz et al., “Long-term calorie restriction decreases metabolic cost of movement and prevents decrease of physical activity during aging in rhesus monkeys,” Experimental Gerontology, vol. 48, no. 11, pp. 1226–1235, 2013. View at Publisher · View at Google Scholar
  64. R. C. Casper, “The “drive for activity” and “restlessness” in anorexia nervosa: potential pathways,” Journal of Affective Disorders, vol. 92, no. 1, pp. 99–107, 2006. View at Publisher · View at Google Scholar · View at Scopus
  65. A. H. Crisp, L. K. G. Hsu, B. Harding, and J. Hartshorn, “Clinical features of anorexia nervosa. A study of a consecutive series of 102 female patients,” Journal of Psychosomatic Research, vol. 24, no. 3-4, pp. 179–191, 1980. View at Publisher · View at Google Scholar · View at Scopus
  66. C. Davis, S. H. Kennedy, E. Ravelski, and M. Dionne, “The role of physical activity in the development and maintenance of eating disorders,” Psychological Medicine, vol. 24, no. 4, pp. 957–967, 1994. View at Google Scholar · View at Scopus
  67. M. B. Sokolowski, H. S. Pereira, and K. Hughes, “Evolution of foraging behavior in drosophila by density-dependent selection,” Proceedings of the National Academy of Sciences of the United States of America, vol. 94, no. 14, pp. 7373–7377, 1997. View at Publisher · View at Google Scholar · View at Scopus
  68. Y. Ben-Shahar, A. Robichon, M. B. Sokolowski, and G. E. Robinson, “Influence of gene action across different time scales on behavior,” Science, vol. 296, no. 5568, pp. 741–744, 2002. View at Publisher · View at Google Scholar · View at Scopus
  69. E. Martin, V. Berka, A.-L. Tsai, and F. Murad, “Soluble guanylyl cyclase: the nitric oxide receptor,” Methods in Enzymology, vol. 396, pp. 478–492, 2005. View at Publisher · View at Google Scholar · View at Scopus
  70. W. F. Epling and W. D. Pierce, “Activity-based anorexia: a biobehavioral perspective,” International Journal of Eating Disorders, vol. 7, no. 4, pp. 475–485, 1988. View at Google Scholar · View at Scopus
  71. J. A. Levine, S. K. Mecrady, L. M. Lanningham-Foster, P. H. Kane, R. C. Foster, and C. U. Manohar, “The role of free-living daily walking in human weight gain and obesity,” Diabetes, vol. 57, no. 3, pp. 548–554, 2008. View at Publisher · View at Google Scholar · View at Scopus
  72. S. L. Schmidt, K. A. Harmon, T. A. Sharp, E. H. Kealey, and D. H. Bessesen, “The effects of overfeeding on spontaneous physical activity in obesity prone and obesity resistant humans,” Obesity, vol. 20, no. 11, pp. 2186–2193, 2012. View at Publisher · View at Google Scholar
  73. A. G. Comuzzie, Personal Communications, 2013.
  74. P. B. Higgins, R. A. Bastarrachea, J. C. Lopez-Alvarenga et al., “Eight week exposure to a high sugar high fat diet results in adiposity gain and alterations in metabolic biomarkers in baboons (Papio hamadryas sp.),” Cardiovascular Diabetology, vol. 9, article 71, 2010. View at Publisher · View at Google Scholar · View at Scopus
  75. U. Ekelund, S. Brage, H. Besson, S. Sharp, and N. J. Wareham, “Time spent being sedentary and weight gain in healthy adults: reverse or bidirectional causality?” American Journal of Clinical Nutrition, vol. 88, no. 3, pp. 612–617, 2008. View at Google Scholar · View at Scopus
  76. B. S. Metcalf, J. Hosking, A. N. Jeffery, L. D. Voss, W. Henley, and T. J. Wilkin, “Fatness leads to inactivity, but inactivity does not lead to fatness: a longitudinal study in children (EarlyBird 45),” Archives of Disease in Childhood, vol. 96, no. 10, pp. 942–947, 2011. View at Publisher · View at Google Scholar · View at Scopus
  77. A. E. Bauman, R. S. Reis, J. F. Sallis, J. C. Wells, R. J. F. Loos, and B. W. Martin, “Correlates of physical activity: why are some people physically active and others not?” The Lancet, vol. 380, no. 9838, pp. 258–271, 2012. View at Publisher · View at Google Scholar
  78. J. T. Lightfoot, A. Hamilton, and T. Moore-Harrison, “Differential gene expression in high and low active animals,” in Proceedings of the Conference on Integrative Physiology of Exercise, 2010.
  79. C. A. Macera, S. A. Ham, M. M. Yore et al., “Prevalence of physical activity in the United States: Behavioral Risk Factor Surveillance System, 2001,” Preventing Chronic Disease, vol. 2, no. 2, article A17, 2005. View at Google Scholar · View at Scopus
  80. C. P. Richter and G. B. Wislocki, “Activity studies on castrated male and female rate with testicular grafts, in correlation with histological of the grafts,” American Journal of Physiology, vol. 86, no. 3, pp. 651–660, 1928. View at Google Scholar
  81. C. Bouchard, A. Tchernof, and A. Tremblay, “Predictors of body composition and body energy changes in response to chronic overfeeding,” International Journal of Obesity, 2013. View at Publisher · View at Google Scholar
  82. R. J. Shephard, “Limits to the measurement of habitual physical activity by questionnaires,” British Journal of Sports Medicine, vol. 37, no. 3, pp. 197–206, 2003. View at Google Scholar · View at Scopus
  83. Centers for Disease Control And Prevention, United Nations Summit on Noncommunicable Diseases, September 19–20, 2011, 2011.
  84. F. W. Booth, S. E. Gordon, C. J. Carlson, and M. T. Hamilton, “Waging war on modern chronic diseases: primary prevention through exercise biology,” Journal of Applied Physiology, vol. 88, no. 2, pp. 774–787, 2000. View at Google Scholar · View at Scopus
  85. D. Chenoweth and J. Leutzinger, “The economic cost of physical inactivity and excess weight in american adults,” Journal of Physical Activity and Health, vol. 3, pp. 148–163, 2006. View at Google Scholar
  86. A. H. Mokdad, J. S. Marks, D. F. Stroup, and J. L. Gerberding, “Actual causes of death in the United States, 2000,” Journal of the American Medical Association, vol. 291, no. 10, pp. 1238–1245, 2004. View at Publisher · View at Google Scholar · View at Scopus
  87. J. Hawks, E. T. Wang, G. M. Cochran, H. C. Harpending, and R. K. Moyzis, “Recent acceleration of human adaptive evolution,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 52, pp. 20753–20758, 2007. View at Publisher · View at Google Scholar · View at Scopus
  88. C. Zimmer, “On the origin of tomorrow,” Science, vol. 326, no. 5958, pp. 1334–1336, 2009. View at Publisher · View at Google Scholar · View at Scopus
  89. R. P. Troiano, D. Berrigan, K. W. Dodd, L. C. Mâsse, T. Tilert, and M. Mcdowell, “Physical activity in the United States measured by accelerometer,” Medicine and Science in Sports and Exercise, vol. 40, no. 1, pp. 181–188, 2008. View at Publisher · View at Google Scholar · View at Scopus
  90. N. Venkataraman, A. L. Cole, P. Ruchala et al., “Reawakening retrocyclins: ancestral human defensins active against HIV-1,” PLoS Biology, vol. 7, no. 4, article e95, 2009. View at Publisher · View at Google Scholar · View at Scopus