Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2013, Article ID 906912, 7 pages
Research Article

Oxidative Stress and Antimicrobial Activity of Chromium(III) and Ruthenium(II) Complexes on Staphylococcus aureus and Escherichia coli

1Departamento de Farmacia, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, X5000HUA Córdoba, Argentina
2Instituto de Investigaciones en Físico Química de Córdoba (INFIQC) CONICET-UNC, Departamento de Físico Química, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, X5000HUA Córdoba, Argentina
3IMBIV-CONICET, Instituto Multidisciplinario de Biología Vegetal, Ciudad Universitaria, X5000HUA Córdoba, Argentina

Received 30 April 2013; Revised 8 July 2013; Accepted 1 August 2013

Academic Editor: Brad Upham

Copyright © 2013 Paulina L. Páez et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


The prevalence of antibiotic resistance has resulted in the need for new approaches to be developed to combat previously easily treatable infections. The main aim of this work was to establish the potential of the synthetic α-diimine chromium(III) and ruthenium(II) complexes (where the α-diimine ligands are bpy = 2,2-bipyridine, phen = 1,10-phenanthroline, and dppz = dipyrido[3,2-a:2′,3′-c]-phenazine) like [Cr(phen)3]3+, [Cr(phen)2(dppz)]3+, [Ru(phen)3]2+, and [Ru(bpy)3]2+ as antibacterial agents by generating oxidative stress. The [Cr(phen)3]3+ and [Cr(phen)2(dppz)]3+ complexes showed activity against Gram positive and Gram negative bacteria with minimum inhibitory concentrations (MICs) ranging from 0.125 μg/mL to 1 μg/mL, while [Ru(phen)3]2+ and [Ru(bpy)3]2+ do not exhibit antimicrobial activity against the two bacterial genera studied at the concentration range used. When ciprofloxacin was combined with [Cr(phen)3]3+ for the inhibition of Staphylococcus aureus and Escherichia coli, an important synergistic effect was observed, FIC 0.066 for S. aureus and FIC 0.064 for E. coli. The work described here shows that chromium(III) complexes are bactericidal for S. aureus and E. coli. Our results indicate that α-diimine chromium(III) complexes may be interesting to open new paths for metallodrug chemotherapy against different bacterial genera since some of these complexes have been found to exhibit remarkable antibacterial activities.