Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2013, Article ID 907209, 6 pages
http://dx.doi.org/10.1155/2013/907209
Research Article

Wound-Healing Potential of Cultured Epidermal Sheets Is Unaltered after Lyophilization: A Preclinical Study in Comparison to Cryopreserved CES

1Cutigen Research Institute, Tego Science Inc., Daerung Technotown III, 448 Gasan-Dong, Gumcheon-Gu, Seoul 153-772, Republic of Korea
2Department of Biosystems & Biomaterials Science and Engineering, Seoul National University, Seoul 151-921, Republic of Korea

Received 6 September 2013; Accepted 18 November 2013

Academic Editor: Paul Higgins

Copyright © 2013 H. Jang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. G. Rheinwald and H. Green, “Serial cultivation of strains of human epidermal keratinocytes: the formation of keratinizing colonies from single cells,” Cell, vol. 6, no. 3, pp. 331–334, 1975. View at Google Scholar · View at Scopus
  2. H. Green, O. Kehinde, and J. Thomas, “Growth of cultured human epidermal cells into multiple epithelia suitable for grafting,” Proceedings of the National Academy of Sciences of the United States of America, vol. 76, no. 11, pp. 5665–5668, 1979. View at Google Scholar · View at Scopus
  3. H. Green, “The birth of therapy with cultured cells,” BioEssays, vol. 30, no. 9, pp. 897–903, 2008. View at Publisher · View at Google Scholar · View at Scopus
  4. G. C. Gurtner, S. Werner, Y. Barrandon, and M. T. Longaker, “Wound repair and regeneration,” Nature, vol. 453, no. 7193, pp. 314–321, 2008. View at Publisher · View at Google Scholar · View at Scopus
  5. E. Tamariz-Domínguez, F. Castro-Muñozledo, and W. Kuri-Harcuch, “Growth factors and extracellular matrix proteins during wound healing promoted with frozen cultured sheets of human epidermal keratinocytes,” Cell and Tissue Research, vol. 307, no. 1, pp. 79–89, 2002. View at Publisher · View at Google Scholar · View at Scopus
  6. M. M. Santoro and G. Gaudino, “Cellular and molecular facets of keratinocyte reepithelization during wound healing,” Experimental Cell Research, vol. 304, no. 1, pp. 274–286, 2005. View at Publisher · View at Google Scholar · View at Scopus
  7. H. Yanaga, Y. Udoh, T. Yamauchi et al., “Cryopreserved cultured epidermal allografts achieved early closure of wounds and reduced scar formation in deep partial-thickness burn wounds (DDB) and split-thickness skin donor sites of pediatric patients,” Burns, vol. 27, no. 7, pp. 689–698, 2001. View at Publisher · View at Google Scholar · View at Scopus
  8. C. Alvarez-Diaz, J. Cuenca-Pardo, A. Sosa-Serrano, E. Juarez-Aguilar, M. Marsch-Moreno, and W. Kuri-Harcuch, “Controlled clinical study of deep partial-thickness burns treated with frozen cultured human allogeneic epidermal sheets,” Journal of Burn Care and Rehabilitation, vol. 21, no. 4, pp. 291–299, 2000. View at Google Scholar · View at Scopus
  9. Z. Navrátilová, V. Slonková, V. Semrádová, and J. Adler, “Cryopreserved and lyophilized cultured epidermal allografts in the treatment of leg ulcers: a pilot study,” Journal of the European Academy of Dermatology and Venereology, vol. 18, no. 2, pp. 173–179, 2004. View at Publisher · View at Google Scholar · View at Scopus
  10. V. Slonkova, Z. Navratilova, V. Semradova, and J. Adler, “Successful treatment of chronic venous leg ulcers with lyophilized cultured epidermal allografts,” Acta Dermatovenerologica Alpina, Panonica, Et Adriatica, vol. 13, no. 4, pp. 119–123, 2004. View at Google Scholar
  11. Y. Barrandon and H. Green, “Three clonal types of keratinocyte with different capacities for multiplication,” Proceedings of the National Academy of Sciences of the United States of America, vol. 84, no. 8, pp. 2302–2306, 1987. View at Google Scholar · View at Scopus
  12. E. Tamariz, M. Marsch-Moreno, F. Castro-Muñozledo, V. Tsutsumi, and W. Kuri-Harcuch, “Frozen cultured sheets of human epidermal keratinocytes enhance healing of full-thickness wounds in mice,” Cell and Tissue Research, vol. 296, no. 3, pp. 575–585, 1999. View at Publisher · View at Google Scholar · View at Scopus
  13. F. M. Watt, “Epidermal stem cells: markers, patterning and the control of stem cell fate,” Philosophical Transactions of the Royal Society B, vol. 353, no. 1370, pp. 831–837, 1998. View at Publisher · View at Google Scholar · View at Scopus
  14. S. E. Gill and W. C. Parks, “Metalloproteinases and their inhibitors: regulators of wound healing,” International Journal of Biochemistry and Cell Biology, vol. 40, no. 6-7, pp. 1334–1347, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. G. Pellegrini, R. Ranno, G. Stracuzzi et al., “The control of epidermal stem cells (holoclones) in the treatment of massive full-thickness burns with autologous keratinocytes cultured on fibrin,” Transplantation, vol. 68, no. 6, pp. 868–879, 1999. View at Publisher · View at Google Scholar · View at Scopus
  16. A. Brain, P. Purkis, P. Coates, M. Hackett, H. Navsaria, and I. Leigh, “Survival of cultured allogenic keratinocytes transplanted to deep dermal bed assessed with probe specific for Y chromosome,” British Medical Journal, vol. 298, no. 6678, pp. 917–919, 1989. View at Google Scholar · View at Scopus
  17. V. B. Morhenn, C. J. Benike, and A. J. Cox, “Cultured human epidermal cells do not synthesize HLA-DR,” Journal of Investigative Dermatology, vol. 78, no. 1, pp. 32–37, 1982. View at Google Scholar · View at Scopus
  18. R. G. C. Teepe, E. J. Koebrugge, M. Ponec, and B. J. Vermeer, “Fresh versus cryopreserved cultured allografts for the treatment of chronic skin ulcers,” British Journal of Dermatology, vol. 122, no. 1, pp. 81–89, 1990. View at Google Scholar · View at Scopus
  19. L. Duinslaeger, G. Verbeken, P. Reper, B. Delaey, S. Vanhalle, and A. Vanderkelen, “Lyophilized keratinocyte cell lysates contain multiple mitogenic activities and stimulate closure of meshed skin autograft-covered burn wounds with efficiency similar to that of fresh allogeneic keratinocyte cultures,” Plastic and Reconstructive Surgery, vol. 98, no. 1, pp. 110–117, 1996. View at Publisher · View at Google Scholar · View at Scopus
  20. T. Somers, L. Duinslaeger, B. Delaey et al., “Stimulation of epithelial healing in chronic postoperative otorrhea using lyophilized cultured keratinocyte lysates,” The American Journal of Otology, vol. 18, no. 6, pp. 702–706, 1997. View at Google Scholar · View at Scopus
  21. T. Kanias and J. P. Acker, “Mechanism of hemoglobin-induced cellular injury in desiccated red blood cells,” Free Radical Biology and Medicine, vol. 49, no. 4, pp. 539–547, 2010. View at Publisher · View at Google Scholar · View at Scopus