Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2013 (2013), Article ID 924023, 12 pages
http://dx.doi.org/10.1155/2013/924023
Research Article

CpG and Interleukin-15 Synergize to Enhance IFN-γ Production by Activated CD8+ T Cells

1Department of Microbiology and Immunology, Virginia Commonwealth University, P.O. Box 980678, Richmond, VA 23298, USA
2Department of Microbiology, Old Dominion University, 4211 Monarch Way, Suite 300, Norfolk, VA 23508, USA

Received 17 May 2012; Accepted 6 August 2012

Academic Editor: Kim Klonowski

Copyright © 2013 Dustin Cobb et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. K. S. Schluns, K. Williams, A. Ma, X. X. Zheng, and L. Lefrançois, “Cutting edge: requirement for IL-15 in the generation of primary and memory antigen-specific CD8 T cells,” Journal of Immunology, vol. 168, no. 10, pp. 4827–4831, 2002. View at Google Scholar · View at Scopus
  2. M. K. Kennedy, M. Glaccum, S. N. Brown et al., “Reversible defects in natural killer and memory CD8 T cell lineages in interleukin 15-deficient mice,” Journal of Experimental Medicine, vol. 191, no. 5, pp. 771–780, 2000. View at Publisher · View at Google Scholar · View at Scopus
  3. C. S. Eickhoff, J. R. Vasconcelos, N. L. Sullivan et al., “Co-administration of a plasmid DNA encoding IL-15 improves long-term protection of a genetic vaccine against Trypanosoma cruzi,” PLoS Neglected Tropical Diseases, vol. 5, no. 3, p. e983, 2011. View at Publisher · View at Google Scholar · View at Scopus
  4. C. A. Klebanoff, S. E. Finkelstein, D. R. Surman et al., “IL-15 enhances the in vivo antitumor activity of tumor-reactive CD8+ T Cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 7, pp. 1969–1974, 2004. View at Publisher · View at Google Scholar · View at Scopus
  5. R. B. Smeltz, “Profound enhancement of the IL-12/IL-18 pathway of IFN-γ secretion in human CD8+ memory T cell subsets via IL-15,” Journal of Immunology, vol. 178, no. 8, pp. 4786–4792, 2007. View at Google Scholar · View at Scopus
  6. M. Wysocka, B. M. Benoit, S. Newton, L. Azzoni, L. J. Montaner, and A. H. Rook, “Enhancement of the host immune responses in cutaneous T-cell lymphoma by CpG oligodeoxynucleotides and IL-15,” Blood, vol. 104, no. 13, pp. 4142–4149, 2004. View at Publisher · View at Google Scholar · View at Scopus
  7. H. Wagner, “Bacterial CpG DNA activates immune cells to signal infectious danger,” Advances in Immunology, no. 73, pp. 329–368, 1999. View at Google Scholar · View at Scopus
  8. T. Sparwasser, T. Miethke, G. Lipford et al., “Bacterial DNA causes septic shock,” Nature, vol. 386, no. 6623, pp. 336–337, 1997. View at Publisher · View at Google Scholar · View at Scopus
  9. H. Hemmi, O. Takeuchi, T. Kawai et al., “A Toll-like receptor recognizes bacterial DNA,” Nature, vol. 408, no. 6813, pp. 740–745, 2000. View at Publisher · View at Google Scholar · View at Scopus
  10. T. Sparwasser, E. S. Koch, R. M. Vabulas et al., “Bacterial DNA and immunostimulatory CpG oligonucleotides trigger maturation and activation of murine dendritic cells,” European Journal of Immunology, vol. 28, no. 6, pp. 2045–2054, 1998. View at Publisher · View at Google Scholar
  11. D. M. Klinman, A. K. Yi, S. L. Beaucage, J. Conover, and A. M. Krieg, “CpG motifs present in bacterial DNA rapidly induce lymphocytes to secrete interleukin 6, interleukin 12, and interferon γ,” Proceedings of the National Academy of Sciences of the United States of America, vol. 93, no. 7, pp. 2879–2883, 1996. View at Publisher · View at Google Scholar · View at Scopus
  12. D. F. Hoft, C. S. Eickhoff, O. K. Giddings, J. R. C. Vasconcelos, and M. M. Rodrigues, “Trans-sialidase recombinant protein mixed with CpG motif-containing oligodeoxynucleotide induces protective mucosal and systemic Trypanosoma cruzi immunity involving CD8+ CTL and B cell-mediated cross-priming,” Journal of Immunology, vol. 179, no. 10, pp. 6889–6900, 2007. View at Google Scholar · View at Scopus
  13. M. E. Rottenberg, A. Riarte, L. Sporrong et al., “Outcome of infection with different strains of Trypanosoma cruzi in mice lacking CD4 and/or CD8,” Immunology Letters, vol. 45, no. 1-2, pp. 53–60, 1995. View at Publisher · View at Google Scholar · View at Scopus
  14. R. L. Tarleton, M. J. Grusby, M. Postan, and L. H. Glimcher, “Trypanosoma cruzi infection in MHC-deficient mice: further evidence for the role of both class I- and class II-restricted T cells in immune resistance and disease,” International Immunology, vol. 8, no. 1, pp. 13–22, 1996. View at Publisher · View at Google Scholar · View at Scopus
  15. F. Tzelepis, B. C. G. De Alencar, M. L. O. Penido, R. T. Gazzinelli, P. M. Persechini, and M. M. Rodrigues, “Distinct kinetics of effector CD8+ cytotoxic T cells after infection with Trypanosoma cruzi in naïve or vaccinated mice,” Infection and Immunity, vol. 74, no. 4, pp. 2477–2481, 2006. View at Publisher · View at Google Scholar · View at Scopus
  16. A. Y. Limon-Flores, R. Cervera-Cetina, J. L. Tzec-Arjona et al., “Effect of a combination DNA vaccine for the prevention and therapy of Trypanosoma cruzi infection in mice: role of CD4+ and CD8+ T cells,” Vaccine, vol. 28, no. 46, pp. 7414–7419, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. D. Cobb, S. Guo, A. M. Lara, P. Manque, G. Buck, and R. B. Smeltz, “T-bet-dependent regulation of CD8+ T-cell expansion during experimental Trypanosoma cruzi infection,” Immunology, vol. 128, no. 4, pp. 589–599, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. D. L. Martin, D. B. Weatherly, S. A. Laucella et al., “CD8+ T-Cell responses to Trypanosoma cruzi are highly focused on strain-variant trans-sialidase epitopes.,” PLoS pathogens, vol. 2, no. 8, p. e77, 2006. View at Publisher · View at Google Scholar · View at Scopus
  19. S. Kuwajima, T. Sato, K. Ishida, H. Tada, H. Tezuka, and T. Ohteki, “Interleukin 15-dependent crosstalk between conventional and plasmacytoid dendritic cells is essential for CpG-induced immune activation,” Nature Immunology, vol. 7, no. 7, pp. 740–746, 2006. View at Publisher · View at Google Scholar · View at Scopus
  20. K. L. Wong, L. F. M. Tang, F. C. Lew et al., “CD44high memory CD8 T cells synergize with CpG DNA to activate dendritic cell IL-12p70 production,” Journal of Immunology, vol. 183, no. 1, pp. 41–50, 2009. View at Publisher · View at Google Scholar · View at Scopus
  21. L. H. Glimcher, M. J. Townsend, B. M. Sullivan, and G. M. Lord, “Recent developments in the transcriptional regulation of cytolytic effector cells,” Nature Reviews Immunology, vol. 4, no. 11, pp. 900–911, 2004. View at Publisher · View at Google Scholar · View at Scopus
  22. E. L. Pearce, A. C. Mullen, G. A. Martins et al., “Control of effector CD8+ T cell function by the transcription factor eomesodermin,” Science, vol. 302, no. 5647, pp. 1041–1043, 2003. View at Publisher · View at Google Scholar · View at Scopus
  23. A. E. Albers, L. Strauss, T. Liao, T. K. Hoffmann, and A. M. Kaufmann, “T cell-tumor interaction directs the development of immunotherapies in head and neck cancer,” Clinical and Developmental Immunology, vol. 2010, Article ID 236378, 2010. View at Publisher · View at Google Scholar · View at Scopus
  24. C. Parodi, A. M. Padilla, and M. A. Basombrío, “Protective immunity against Trypanosoma cruzi,” Memorias do Instituto Oswaldo Cruz, vol. 104, no. 1, pp. 288–294, 2009. View at Google Scholar · View at Scopus
  25. S. N. Woolard and U. Kumaraguru, “Viral vaccines and CTL response,” Journal of Biomedicine and Biotechnology, vol. 2010, Article ID 141657, 6 pages, 2010. View at Publisher · View at Google Scholar · View at Scopus
  26. C. Bode, G. Zhao, F. Steinhagen, T. Kinjo, and D. M. Klinman, “CpG DNA as a vaccine adjuvant,” Expert Review of Vaccines, vol. 10, no. 4, pp. 499–511, 2011. View at Publisher · View at Google Scholar · View at Scopus
  27. A. M. Krieg, “CpG motifs in bacterial DNA and their immune effects,” Annual Review of Immunology, vol. 20, pp. 709–760, 2002. View at Publisher · View at Google Scholar · View at Scopus
  28. A. M. Padilla, L. J. Simpson, and R. L. Tarleton, “Insufficient TLR activation contributes to the slow development of CD8+ T cell responses in Trypanosoma cruzi infection,” Journal of Immunology, vol. 183, no. 2, pp. 1245–1252, 2009. View at Publisher · View at Google Scholar · View at Scopus
  29. S. G. Fonseca, M. M. Reis, V. Coelho et al., “Locally produced survival cytokines IL-15 and IL-7 may be associated to the predominance of CD8+ T cells at heart lesions of human chronic chagas disease cardiomyopathy,” Scandinavian Journal of Immunology, vol. 66, no. 2-3, pp. 362–371, 2007. View at Publisher · View at Google Scholar · View at Scopus
  30. F. F. de Araújo, R. Corrêa-Oliveira, M. O. Rocha et al., “Foxp3+CD25(high) CD4+ regulatory T cells from indeterminate patients with Chagas disease can suppress the effector cells and cytokines and reveal altered correlations with disease severity,” Immunobiology, vol. 217, no. 8, pp. 768–777, 2012. View at Google Scholar
  31. F. F. de Araújo, D. M. Vitelli-Avelar, A. Teixeira-Carvalho et al., “Regulatory T cells phenotype in different clinical forms of chagas' disease,” PLoS Neglected Tropical Diseases, vol. 5, no. 5, p. e992, 2011. View at Publisher · View at Google Scholar · View at Scopus
  32. C. Y. Wu, R. R. Warrier, X. Wang, D. H. Presky, and M. K. Gately, “Regulation of interleukin-12 receptor β1 chain expression and interleukin-12 binding by human peripheral blood mononuclear cells,” European Journal of Immunology, vol. 27, no. 1, pp. 147–154, 1997. View at Publisher · View at Google Scholar · View at Scopus
  33. T. Musikacharoen, A. Oguma, Y. Yoshikai, N. Chiba, A. Masuda, and T. Matsuguchi, “Interleukin-15 induces IL-12 receptor β1 gene expression through PU.1 and IRF 3 by targeting chromatin remodeling,” Blood, vol. 105, no. 2, pp. 711–720, 2005. View at Publisher · View at Google Scholar · View at Scopus
  34. B. M. Sullivan, A. Juedes, S. J. Szabo, M. Von Herrath, and L. H. Glimcher, “Antigen-driven effector CD8 T cell function regulated by T-bet,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 26, pp. 15818–15823, 2003. View at Publisher · View at Google Scholar · View at Scopus