Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2013 (2013), Article ID 928790, 9 pages
Research Article

Improvement of Hydrodynamics-Based Gene Transfer of Nonviral DNA Targeted to Murine Hepatocytes

1Department of Surgery, National Defense Medical College, 3-2 Namiki, Saitama, Tokorozawa 359-8513, Japan
2Division of Animal Science, National Institute of Agrobiological Sciences, 2 Ikenodai, Ibaraki, Tsukuba 305-0901, Japan
3Research Institute, National Defense Medical College, 3-2 Namiki, Saitama, Tokorozawa 359-8513, Japan
4Section of Gene Expression Regulation, Frontier Science Research Center, Kagoshima University, 1-21-40 Kohrimoto, Kagoshima, Kagoshima 890-0065, Japan

Received 20 December 2012; Revised 12 February 2013; Accepted 12 February 2013

Academic Editor: Rudi Beyaert

Copyright © 2013 Shingo Nakamura et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


The liver is an important organ for supporting the life of an individual. Gene transfer toward this organ has been attempted in many laboratories to date; however, there have been few reports on improved liver-targeted gene delivery by using a nonviral vector. In this study, we examined the effect of various types of gene delivery carriers on enhancing the uptake and gene expression of exogenous DNA in murine hepatocytes when a hydrodynamics-based gene delivery (HGD) is performed via tail-vein injection. Mice were singly injected with a large amount of phosphate-buffered saline containing reporter plasmid DNA and/or with a gene delivery carrier. One day after the gene delivery, the animals' livers were dissected and subjected to biochemical, histochemical, and molecular biological analyses. The strongest signal from the reporter plasmid DNA was observed when the DNA was mixed with a polyethylenimine- (PEI-) based reagent. Coinjection with pCRTEIL (a loxP-floxed reporter construct) and pTR/NCre (a liver-specific Cre expression vector) resulted in the liver-specific recombination of pCRTEIL. The combination of PEI with HGD would thus be a valuable tool for liver-specific manipulation to examine the function of a gene of interest in the liver and for creating liver disease models.