Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2013 (2013), Article ID 983821, 12 pages
http://dx.doi.org/10.1155/2013/983821
Research Article

Effects of Diphenyl Diselenide on Methylmercury Toxicity in Rats

1Biochemistry and Molecular Biology Department, Graduation Program in Biological Sciences: Toxicological Biochemistry, Natural and Exact Sciences Center, Federal University of Santa Maria, 97105-900 Santa Maria, RS, Brazil
2Federal University of Pampa—Caçapava do Sul Campus, Avenida Pedro Anunciação, Vila Batista, 96570-000 Caçapava do Sul, RS, Brazil
3Higher Education Cenecista Institute of Santo Ângelo—IESA, Rua Dr. João Augusto Rodrigues 471, 98801-015 Santo Ângelo, RS, Brazil
4Regional University of Cariri, Pharmacology and Molecular Chemistry Laboratory, Rua Cel. Antônio Luís 1161, 63100-000 Crato, CE, Brazil
5Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
6Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA

Received 19 September 2013; Revised 25 November 2013; Accepted 25 November 2013

Academic Editor: Fernando Barbosa Jr.

Copyright © 2013 Cristiane L. Dalla Corte et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. M. L. Carvalho, J. Lu, X. Zhang, E. S. J. Arnér, and A. Holmgren, “Effects of selenite and chelating agents on mammalian thioredoxin reductase inhibited by mercury: implications for treatment of mercury poisoning,” The FASEB Journal, vol. 25, no. 1, pp. 370–381, 2011. View at Publisher · View at Google Scholar · View at Scopus
  2. T. W. Clarkson, L. Magos, and G. J. Myers, “The toxicology of mercury—current exposures and clinical manifestations,” The New England Journal of Medicine, vol. 349, no. 18, pp. 1731–1737, 2003. View at Publisher · View at Google Scholar · View at Scopus
  3. G. C. Compeau and R. Bartha, “Sulfate-reducing bacteria: principal methylators of mercury in anoxic estuarine sediment,” Applied and Environmental Microbiology, vol. 50, no. 2, pp. 498–502, 1985. View at Google Scholar · View at Scopus
  4. J. G. Dórea, “Persistent, bioaccumulative and toxic substances in fish: human health considerations,” Science of the Total Environment, vol. 400, no. 1–3, pp. 93–114, 2008. View at Publisher · View at Google Scholar · View at Scopus
  5. P. Grandjean and K. T. Herz, “Methylmercury and brain development: imprecision and underestimation of developmental neurotoxicity in humans,” Mount Sinai Journal of Medicine, vol. 78, no. 1, pp. 107–118, 2011. View at Publisher · View at Google Scholar · View at Scopus
  6. C. Johansson, A. F. Castoldi, N. Onishchenko, L. Manzo, M. Vahter, and S. Ceccatelli, “Neurobehavioural and molecular changes induced by methylmercury exposure during development,” Neurotoxicity Research, vol. 11, no. 3-4, pp. 241–260, 2007. View at Publisher · View at Google Scholar · View at Scopus
  7. M. Farina, M. Aschner, and J. B. T. Rocha, “Oxidative stress in MeHg-induced neurotoxicity,” Toxicology and Applied Pharmacology, vol. 256, no. 3, pp. 405–417, 2011. View at Publisher · View at Google Scholar · View at Scopus
  8. J. L. Franco, H. C. Braga, J. Stringari et al., “Mercurial-induced hydrogen peroxide generation in mouse brain mitochondria: protective effects of quercetin,” Chemical Research in Toxicology, vol. 20, no. 12, pp. 1919–1926, 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. V. Branco, J. Canário, A. Holmgren, and C. Carvalho, “Inhibition of the thioredoxin system in the brain and liver of zebra-seabreams exposed to waterborne methylmercury,” Toxicology and Applied Pharmacology, vol. 251, no. 2, pp. 95–103, 2011. View at Publisher · View at Google Scholar · View at Scopus
  10. J. L. Franco, T. Posser, P. R. Dunkley et al., “Methylmercury neurotoxicity is associated with inhibition of the antioxidant enzyme glutathione peroxidase,” Free Radical Biology and Medicine, vol. 47, no. 4, pp. 449–457, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. C. Wagner, J. H. Sudati, C. W. Nogueira, and J. B. T. Rocha, “In vivo and in vitro inhibition of mice thioredoxin reductase by methylmercury,” BioMetals, vol. 23, no. 6, pp. 1171–1177, 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. A. Dreiem and R. F. Seegal, “Methylmercury-induced changes in mitochondrial function in striatal synaptosomes are calcium-dependent and ROS-independent,” NeuroToxicology, vol. 28, no. 4, pp. 720–726, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. V. Glaser, E. M. Nazari, Y. M. R. Müller et al., “Effects of inorganic selenium administration in methylmercury-induced neurotoxicity in mouse cerebral cortex,” International Journal of Developmental Neuroscience, vol. 28, no. 7, pp. 631–637, 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. D. H. Roos, R. L. Puntel, M. Farina et al., “Modulation of methylmercury uptake by methionine: prevention of mitochondrial dysfunction in rat liver slices by a mimicry mechanism,” Toxicology and Applied Pharmacology, vol. 252, no. 1, pp. 28–35, 2011. View at Publisher · View at Google Scholar · View at Scopus
  15. A. L. Choi, E. Budtz-Jørgensen, P. J. Jørgensen et al., “Selenium as a potential protective factor against mercury developmental neurotoxicity,” Environmental Research, vol. 107, no. 1, pp. 45–52, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. A. Fredriksson, A. Teiling Gardlund, K. Bergman et al., “Effects of maternal dietary supplementation with selenite on the postnatal development of rat offspring exposed to methyl mercury in utero,” Pharmacology and Toxicology, vol. 72, no. 6, pp. 377–382, 1993. View at Google Scholar · View at Scopus
  17. D. L. Hatfield and V. N. Gladyshev, “How selenium has altered our understanding of the genetic code,” Molecular and Cellular Biology, vol. 22, no. 11, pp. 3565–3576, 2002. View at Publisher · View at Google Scholar · View at Scopus
  18. C. L. Dalla Corte, F. A. A. Soares, M. Aschner, and J. B. T. Rocha, “Diphenyl diselenide prevents methylmercury-induced mitochondrial dysfunction in rat liver slices,” Tetrahedron, vol. 68, no. 51, pp. 10437–10443, 2012. View at Google Scholar
  19. D. H. Roos, R. L. Puntel, M. M. Santos et al., “Guanosine and synthetic organoselenium compounds modulate methylmercury-induced oxidative stress in rat brain cortical slices: involvement of oxidative stress and glutamatergic system,” Toxicology in Vitro, vol. 23, no. 2, pp. 302–307, 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. Z. Yin, E. Lee, M. Ni et al., “Methylmercury-induced alterations in astrocyte functions are attenuated by ebselen,” NeuroToxicology, vol. 32, no. 3, pp. 291–299, 2011. View at Publisher · View at Google Scholar · View at Scopus
  21. A. S. de Freitas, V. R. Funck, M. D. S. Rotta et al., “Diphenyl diselenide, a simple organoselenium compound, decreases methylmercury-induced cerebral, hepatic and renal oxidative stress and mercury deposition in adult mice,” Brain Research Bulletin, vol. 79, no. 1, pp. 77–84, 2009. View at Publisher · View at Google Scholar · View at Scopus
  22. C. W. Nogueira and J. B. T. Rocha, “Diphenyl diselenide a janus-faced molecule,” Journal of the Brazilian Chemical Society, vol. 21, no. 11, pp. 2055–2071, 2010. View at Google Scholar · View at Scopus
  23. A. S. de Freitas, A. de Souza Prestes, C. Wagner et al., “Reduction of diphenyl diselenide and analogs by mammalian thioredoxin reductase is independent of their gluthathione peroxidase-like activity: a possible novel pathway for their antioxidant activity,” Molecules, vol. 15, no. 11, pp. 7699–7714, 2010. View at Publisher · View at Google Scholar · View at Scopus
  24. L. Magos, “The absorption, distribution, and excretion of methylmercury,” in The Toxicity of Methylmercury, C. U. Edccles and Z. Annau, Eds., pp. 24–44, John Hopkins University Press, Baltimore, Md, USA, 1987. View at Google Scholar
  25. R. Doi and M. Tagawa, “A study on the biochemical and biological behavior of methylmercury,” Toxicology and Applied Pharmacology, vol. 69, no. 3, pp. 407–416, 1983. View at Google Scholar · View at Scopus
  26. V. B. Brito, V. Folmer, G. O. Puntel et al., “Diphenyl diselenide and 2,3-dimercaptopropanol increase the PTZ-induced chemical seizure and mortality in mice,” Brain Research Bulletin, vol. 68, no. 6, pp. 414–418, 2006. View at Publisher · View at Google Scholar · View at Scopus
  27. C. W. Nogueira and J. B. T. Rocha, “Toxicology and pharmacology of selenium: emphasis on synthetic organoselenium compounds,” Archives of Toxicology, vol. 85, no. 11, pp. 1313–1359, 2011. View at Publisher · View at Google Scholar · View at Scopus
  28. M. Prigol, R. F. Schumacher, C. WayneNogueira, and G. Zeni, “Convulsant effect of diphenyl diselenide in rats and mice and its relationship to plasma levels,” Toxicology Letters, vol. 189, no. 1, pp. 35–39, 2009. View at Publisher · View at Google Scholar · View at Scopus
  29. C. Paulmier, “Selenoorganic functional groups,” in Selenium Reagents and Intermediates in Organic Synthesis, pp. 25–51, Pergamon Press, Oxford, UK, 1 edition, 1986. View at Google Scholar
  30. J. Christinal and T. Sumathi, “Effect of Bacopa monniera extract on methylmercury-induced behavioral and histopathological changes in rats,” Biological Trace Element Research, vol. 155, no. 1, pp. 56–64, 2013. View at Google Scholar
  31. T. Sumathi, C. Shobana, J. Christinal, and C. Anusha, “Protective effect of Bacopa monniera on methyl mercury-induced oxidative stress in cerebellum of rats,” Cellular and Molecular Neurobiology, vol. 2, no. 6, pp. 979–987, 2012. View at Publisher · View at Google Scholar · View at Scopus
  32. G. R. Bhagure and S. R. Mirgane, “Heavy metal concentrations in groundwaters and soils of Thane Region of Maharashtra, India,” Environmental Monitoring and Assessment, vol. 173, no. 1–4, pp. 643–652, 2011. View at Publisher · View at Google Scholar · View at Scopus
  33. P. L. Broadhurst, “The place of animal psychology in the development of psychosomatic research,” Fortschritte der Psychosomatischen Medizin, vol. 1, pp. 63–69, 1960. View at Google Scholar · View at Scopus
  34. R. Lalonde, T. L. Lewis, C. Strazielle, H. Kim, and K. Fukuchi, “Transgenic mice expressing the βAPP695SWE mutation: effects on exploratory activity, anxiety, and motor coordination,” Brain Research, vol. 977, no. 1, pp. 38–45, 2003. View at Publisher · View at Google Scholar · View at Scopus
  35. R. Lalonde, H. D. Kim, and K. Fukuchi, “Exploratory activity, anxiety, and motor coordination in bigenic APPswe + PS1/ΔE9 mice,” Neuroscience Letters, vol. 369, no. 2, pp. 156–161, 2004. View at Publisher · View at Google Scholar · View at Scopus
  36. A. Holmgren and M. Bjornstedt, “Thioredoxin and thioredoxin reductase,” Methods in Enzymology, vol. 252, pp. 199–208, 1995. View at Publisher · View at Google Scholar · View at Scopus
  37. N. Brustovetsky and J. M. Dubinsky, “Dual responses of CNS mitochondria to elevated calcium,” Journal of Neuroscience, vol. 20, no. 1, pp. 103–113, 2000. View at Google Scholar · View at Scopus
  38. G. L. Ellman, “Tissue sulfhydryl groups,” Archives of Biochemistry and Biophysics, vol. 82, no. 1, pp. 70–77, 1959. View at Google Scholar · View at Scopus
  39. Q. Guo, S. Christakos, N. Robinson, and M. P. Mattson, “Calbindin D28K blocks the proapoptotic actions of mutant presenilin 1: reduced oxidative stress and preserved mitochondrial function,” Proceedings of the National Academy of Sciences of the United States of America, vol. 95, no. 6, pp. 3227–3232, 1998. View at Publisher · View at Google Scholar · View at Scopus
  40. C. García-Ruiz, A. Colell, M. Marí, A. Morales, and J. C. Fernández-Checa, “Direct effect of ceramide on the mitochondrial electron transport chain leads to generation of reactive oxygen species: role of mitochondrial glutathione,” Journal of Biological Chemistry, vol. 272, no. 17, pp. 11369–11377, 1997. View at Publisher · View at Google Scholar · View at Scopus
  41. T. Mosmann, “Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays,” Journal of Immunological Methods, vol. 65, no. 1-2, pp. 55–63, 1983. View at Google Scholar · View at Scopus
  42. T. V. Votyakova and I. J. Reynolds, “Ca2+-induced permeabilization promotes free radical release from rat brain mitochondria with partially inhibited complex I,” Journal of Neurochemistry, vol. 93, no. 3, pp. 526–537, 2005. View at Publisher · View at Google Scholar · View at Scopus
  43. M. M. Bradford, “A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding,” Analytical Biochemistry, vol. 72, no. 1-2, pp. 248–254, 1976. View at Google Scholar · View at Scopus
  44. P. B. Mello, F. Benetti, M. Cammarota, and I. Izquierdo, “Effects of acute and chronic physical exercise and stress on different types of memory in rats,” Anais da Academia Brasileira de Ciencias, vol. 80, no. 2, pp. 301–309, 2008. View at Google Scholar · View at Scopus
  45. C. Pinheiro, J. L. M. Do Nascimento, L. C. L. Silveira, J. B. T. Rocha, and M. Aschner, “Mercury and selenium—a review on aspects related to the health of human populations in the Amazon,” Environmental Bioindicators, vol. 4, no. 3, pp. 222–245, 2009. View at Publisher · View at Google Scholar · View at Scopus
  46. F. E. Huggins, S. A. Raverty, O. S. Nielsen, N. E. Sharp, J. D. Robertson, and N. V. C. Ralston, “An XAFS investigation of mercury and selenium in Beluga whale tissues,” Environmental Bioindicators, vol. 4, no. 4, pp. 291–302, 2009. View at Publisher · View at Google Scholar · View at Scopus
  47. H. Iwata, T. Masukawa, H. Kito, and M. Hayashi, “Degradation of methylmercury by selenium,” Life Sciences, vol. 31, no. 9, pp. 859–866, 1982. View at Google Scholar · View at Scopus
  48. J. H. Palmer and G. Parkin, “2-Seleno-1-alkylbenzimidazoles and their diselenides: synthesis and structural characterization of a 2-seleno-1-methylbenzimidazole complex of mercury,” Polyhedron, vol. 52, pp. 658–668, 2013. View at Google Scholar
  49. B. Moller-Madsen and G. Danscher, “Localization of mercury in CNS of the rat: IV. The effect of selenium on orally administered organic and inorganic mercury,” Toxicology and Applied Pharmacology, vol. 108, no. 3, pp. 457–473, 1991. View at Publisher · View at Google Scholar · View at Scopus
  50. J. R. Prohaska and H. E. Ganther, “Interactions between selenium and methylmercury in rat brain,” Chemico-Biological Interactions, vol. 16, no. 2, pp. 155–167, 1977. View at Publisher · View at Google Scholar · View at Scopus
  51. M. O. Dietrich, C. E. Mantese, G. D. Anjos, D. O. Souza, and M. Farina, “Motor impairment induced by oral exposure to methylmercury in adult mice,” Environmental Toxicology and Pharmacology, vol. 19, no. 1, pp. 169–175, 2005. View at Publisher · View at Google Scholar · View at Scopus
  52. M. Aschner, T. Syversen, D. O. Souza, J. B. T. Rocha, and M. Farina, “Involvement of glutamate and reactive oxygen species in methylmercury neurotoxicity,” Brazilian Journal of Medical and Biological Research, vol. 40, no. 3, pp. 285–291, 2007. View at Publisher · View at Google Scholar · View at Scopus
  53. D. W. Choi, “Excitotoxic cell death,” Journal of Neurobiology, vol. 23, no. 9, pp. 1261–1276, 1992. View at Publisher · View at Google Scholar · View at Scopus
  54. S. Ceccatelli, E. Daré, and M. Moors, “Methylmercury-induced neurotoxicity and apoptosis,” Chemico-Biological Interactions, vol. 188, no. 2, pp. 301–308, 2010. View at Publisher · View at Google Scholar · View at Scopus
  55. N. Mori, A. Yasutake, and K. Hirayama, “Comparative study of activities in reactive oxygen species production/defense system in mitochondria of rat brain and liver, and their susceptibility to methylmercury toxicity,” Archives of Toxicology, vol. 81, no. 11, pp. 769–776, 2007. View at Publisher · View at Google Scholar · View at Scopus
  56. L. V. Papp, A. Holmgren, and K. K. Khanna, “Selenium and selenoproteins in health and disease,” Antioxidants and Redox Signaling, vol. 12, no. 7, pp. 793–795, 2010. View at Publisher · View at Google Scholar · View at Scopus
  57. W. J. Adams Jr., J. J. Kocsis, and R. Snyder, “Acute toxicity and urinary excretion of diphenyldiselenide,” Toxicology Letters, vol. 48, no. 3, pp. 301–310, 1989. View at Google Scholar · View at Scopus
  58. G. Zhang, V. Nitteranon, S. Guo et al., “Organoselenium compounds modulate extracellular redox by induction of extracellular cysteine and cell surface thioredoxin reductase,” Chemical Research in Toxicology, vol. 26, no. 3, pp. 456–464, 2013. View at Google Scholar