Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2014, Article ID 127572, 12 pages
http://dx.doi.org/10.1155/2014/127572
Research Article

Identifying Potential Clinical Syndromes of Hepatocellular Carcinoma Using PSO-Based Hierarchical Feature Selection Algorithm

Zhiwei Ji1 and Bing Wang1,2,3

1School of Electronics and Information Engineering, Tongji University, Shanghai 201804, China
2The Advanced Research Institute of Intelligent Sensing Network, Tongji University, Shanghai 201804, China
3The Key Laboratory of Embedded System and Service Computing, Tongji University, Ministry of Education, Shanghai 201804, China

Received 17 December 2013; Revised 7 February 2014; Accepted 10 February 2014; Published 17 March 2014

Academic Editor: Jose C. Nacher

Copyright © 2014 Zhiwei Ji and Bing Wang. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. F. X. Bosch, J. Ribes, R. Cleries, and M. Diaz, “Epidemiology of hepatocellular carcinoma,” Clinics in Liver Disease, vol. 9, no. 2, pp. 191–211, 2005. View at Publisher · View at Google Scholar · View at Scopus
  2. A. Jemal, F. Bray, M. M. Center, J. Ferlay, E. Ward, and D. Forman, “Global cancer statistics,” CA: A Cancer Journal for Clinicians, vol. 61, no. 2, pp. 69–90, 2011. View at Publisher · View at Google Scholar · View at Scopus
  3. H. B. El-Serag, “Hepatocellular carcinoma,” The New England Journal of Medicine, vol. 365, no. 12, pp. 1118–1127, 2011. View at Publisher · View at Google Scholar · View at Scopus
  4. C. Gallo, “A new prognostic system for hepatocellular carcinoma: a retrospective study of 435 patients: the Cancer of the Liver Italian Program (CLIP) investigators,” Hepatology, vol. 28, no. 3, pp. 751–755, 1998. View at Google Scholar · View at Scopus
  5. G. Miller, L. H. Schwartz, and M. D'Angelica, “The use of imaging in the diagnosis and staging of hepatobiliary malignancies,” Surgical Oncology Clinics of North America, vol. 16, no. 2, pp. 343–368, 2007. View at Publisher · View at Google Scholar · View at Scopus
  6. A. Forner, R. Vilana, C. Ayuso et al., “Diagnosis of hepatic nodules 20 mm or smaller in cirrhosis: prospective validation of the noninvasive diagnostic criteria for hepatocellular carcinoma,” Hepatology, vol. 47, no. 1, pp. 97–104, 2008. View at Publisher · View at Google Scholar · View at Scopus
  7. Y. H. Liao, C. C. Lin, T. C. Li, and J. G. Lin, “Utilization pattern of traditional Chinese medicine for liver cancer patients in Taiwan,” BMC Complementary & Alternative Medicine, vol. 12, article 146, 2012. View at Publisher · View at Google Scholar
  8. R. Mourad, C. Sinoquet, and P. Leray, “Probabilistic graphical models for genetic association studies,” Briefings in Bioinformatics, vol. 13, no. 1, pp. 20–33, 2012. View at Publisher · View at Google Scholar · View at Scopus
  9. X.-W. Chen, G. Anantha, and X. T. Lin, “Improving Bayesian network structure learning with mutual information-based node ordering in the K2 algorithm,” IEEE Transactions on Knowledge and Data Engineering, vol. 20, no. 5, pp. 628–640, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. A. Sharma, S. Imoto, and S. Miyano, “A filter based feature selection algorithm using null space of covariance matrix for DNA microarray gene expression data,” Current Bioinformatics, vol. 7, no. 3, pp. 289–294, 2012. View at Publisher · View at Google Scholar
  11. F. Bellal, H. Elghazel, and A. Aussem, “A semi-supervised feature ranking method with ensemble learning,” Pattern Recognition Letters, vol. 33, no. 10, pp. 1426–1433, 2012. View at Publisher · View at Google Scholar · View at Scopus
  12. H. W. Chang, Y. H. Chiu, H. Y. Kao, C. H. Yang, and W. H. Ho, “Comparison of classification algorithms with wrapper-based feature selection for predicting osteoporosis outcome based on genetic factors in a taiwanese women population,” International Journal of Endocrinology, vol. 2013, Article ID 850735, 8 pages, 2013. View at Publisher · View at Google Scholar
  13. M. B. Imani, M. R. Keyvanpour, and R. Azmi, “A novel embedded feature selection method: a comparative study in the application of text categorization,” Applied Artificial Intelligence, vol. 27, no. 5, pp. 408–427, 2013. View at Publisher · View at Google Scholar
  14. G. Chandrashekar and F. Sahin, “A survey on feature selection methods,” Computers & Electrical Engineering, vol. 40, no. 1, pp. 16–28, 2014. View at Publisher · View at Google Scholar
  15. P. Ruvolo, I. Fasel, and J. R. Movellan, “A learning approach to hierarchical feature selection and aggregation for audio classification,” Pattern Recognition Letters, vol. 31, no. 12, pp. 1535–1542, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. A. R. Jordehi and J. Jasni, “Parameter selection in particle swarm optimisation: a survey,” Journal of Experimental & Theoretical Artificial Intelligence, vol. 25, no. 4, pp. 527–542, 2013. View at Publisher · View at Google Scholar
  17. A. H. El-Maleh, A. T. Sheikh, and S. M. Sait, “Binary particle swarm optimization (BPSO) based state assignment for area minimization of sequential circuits,” Applied Soft Computing, vol. 13, no. 12, pp. 4832–4840, 2013. View at Publisher · View at Google Scholar
  18. Q. Zhao and S. Z. Yan, “Collision-free path planning for mobile robots using chaotic particle swarm optimization,” in Proceedings of the 1st International Conference on Natural Computation (ICNC '05), vol. 3612, part 3 of Lecture Notes in Computer Science, pp. 632–635, Changsha, China, August 2005. View at Publisher · View at Google Scholar · View at Scopus
  19. W. Guan and A. Gray, “Sparse high-dimensional fractional-norm support vector machine via DC programming,” Computational Statistics & Data Analysis, vol. 67, pp. 136–148, 2013. View at Publisher · View at Google Scholar
  20. A. Mellit, A. M. Pavan, and M. Benghanem, “Least squares support vector machine for short-term prediction of meteorological time series,” Theoretical and Applied Climatology, vol. 111, no. 1-2, pp. 297–307, 2013. View at Publisher · View at Google Scholar
  21. G. Xie, S. Y. Wang, Y. X. Zhao, and K. K. Lai, “Hybrid approaches based on LSSVR model for container throughput forecasting: a comparative study,” Applied Soft Computing, vol. 13, no. 5, pp. 2232–2241, 2013. View at Publisher · View at Google Scholar
  22. I. J. Leno, S. S. Sankar, M. V. Raj, and S. G. Ponnambalam, “An elitist strategy genetic algorithm for integrated layout design,” The International Journal of Advanced Manufacturing Technology, vol. 66, no. 9 –12, pp. 1573–1589, 2013. View at Publisher · View at Google Scholar
  23. J. Z. Wang, L. S. Wu, J. Kong, Y. X. Li, and B. X. Zhang, “Maximum weight and minimum redundancy: a novel framework for feature subset selection,” Pattern Recognition, vol. 46, no. 6, pp. 1616–1627, 2013. View at Publisher · View at Google Scholar
  24. D. M. Chickering, “Learning equivalence classes of Bayesian-network structures,” Journal of Machine Learning Research, vol. 2, no. 3, pp. 445–498, 2002. View at Publisher · View at Google Scholar · View at Scopus
  25. R. G. Cowell, “Local propagation in conditional Gaussian Bayesian networks,” Journal of Machine Learning Research, vol. 6, pp. 1517–1550, 2005. View at Google Scholar · View at Scopus
  26. M. M. Zhu, S. Y. Liu, Y. L. Yang, and K. Liu, “Using junction trees for structural learning of Bayesian networks,” Journal of Systems Engineering and Electronics, vol. 23, no. 2, pp. 286–292, 2012. View at Publisher · View at Google Scholar
  27. L. F. Bo, L. Wang, and L. C. Jiao, “Multiple parameter selection for LS-SVM using smooth leave-one-out error,” in Proceedings of the 2nd International Symposium on Neural Networks: Advances in Neural Networks (ISNN '05), vol. 3496, part 1 of Lecture Notes in Computer Science, pp. 851–856, Chongqing, China, June 2005. View at Scopus
  28. S. J. An, W. Q. Liu, and S. Venkatesh, “Fast cross-validation algorithms for least squares support vector machine and kernel ridge regression,” Pattern Recognition, vol. 40, no. 8, pp. 2154–2162, 2007. View at Publisher · View at Google Scholar · View at Scopus
  29. G. Rubio, H. Pomares, I. Rojas, and L. J. Herrera, “A heuristic method for parameter selection in LS-SVM: application to time series prediction,” International Journal of Forecasting, vol. 27, no. 3, pp. 725–739, 2011. View at Publisher · View at Google Scholar · View at Scopus
  30. Z. Yang, X. S. Gu, X. Y. Liang, and L. C. Ling, “Genetic algorithm-least squares support vector regression based predicting and optimizing model on carbon fiber composite integrated conductivity,” Materials & Design, vol. 31, no. 3, pp. 1042–1049, 2010. View at Publisher · View at Google Scholar · View at Scopus
  31. Y. L. Liu, L. Tao, J. J. Lu, S. Xu, Q. Ma, and Q. Duan, “A novel force field parameter optimization method based on LSSVR for ECEPP,” FEBS Letters, vol. 585, no. 6, pp. 888–892, 2011. View at Publisher · View at Google Scholar · View at Scopus
  32. Y. H. Zhang, W. S. Zhang, and Y. Xie, “Improved heuristic equivalent search algorithm based on maximal information coefficient for Bayesian network structure learning,” Neurocomputing, vol. 117, pp. 186–195, 2013. View at Publisher · View at Google Scholar