Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2014, Article ID 154946, 14 pages
http://dx.doi.org/10.1155/2014/154946
Research Article

Identification of Key Genes in the Response to Salmonella enterica Enteritidis, Salmonella enterica Pullorum, and Poly(I:C) in Chicken Spleen and Caecum

Animal Genetic Resources Laboratory, College of Animal Science and Technology, Yangzhou University, 88 South of University Avenue, Yangzhou, Jiangsu 225009, China

Received 10 September 2013; Revised 20 November 2013; Accepted 5 January 2014; Published 23 February 2014

Academic Editor: Thomas Schmitz-Rixen

Copyright © 2014 Teng Ma et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. Suzuki, “Pathogenicity of Salmonella enteritidis in poultry,” International Journal of Food Microbiology, vol. 21, no. 1-2, pp. 89–105, 1994. View at Publisher · View at Google Scholar · View at Scopus
  2. P. A. Barrow, M. B. Huggins, M. A. Lovell, and J. M. Simpson, “Observations on the pathogenesis of experimental Salmonella typhimurium infection in chickens,” Research in Veterinary Science, vol. 42, no. 2, pp. 194–199, 1987. View at Google Scholar · View at Scopus
  3. N. Tanimura, S. Saitoh, F. Matsumoto, S. Akashi-Takamura, and K. Miyake, “Roles for LPS-dependent interaction and relocation of TLR4 and TRAM in TRIF-signaling,” Biochemical and Biophysical Research Communications, vol. 368, no. 1, pp. 94–99, 2008. View at Publisher · View at Google Scholar · View at Scopus
  4. P. Li, P. Xia, J. Wen et al., “Up-regulation of the MyD88-dependent pathway of TLR signaling in spleen and caecum of young chickens infected with Salmonella serovar Pullorum,” Veterinary Microbiology, vol. 143, no. 2–4, pp. 346–351, 2010. View at Publisher · View at Google Scholar · View at Scopus
  5. K. T. Ramasamy, P. Verma, and M. R. Reddy, “Differential gene expression of antimicrobial peptides β defensins in the gastrointestinal tract of Salmonella serovar Pullorum infected broiler chickens,” Veterinary Research Communications, vol. 36, no. 1, pp. 57–62, 2012. View at Publisher · View at Google Scholar · View at Scopus
  6. G. S. K. Withanage, P. Kaiser, P. Wigley et al., “Rapid expression of chemokines and proinflammatory cytokines in newly hatched chickens infected with Salmonella enterica serovar typhimurium,” Infection and Immunity, vol. 72, no. 4, pp. 2152–2159, 2004. View at Publisher · View at Google Scholar · View at Scopus
  7. G. S. K. Withanage, P. Wigley, P. Kaiser et al., “Cytokine and chemokine responses associated with clearance of a primary Salmonella enterica serovar typhimurium infection in the chicken and in protective immunity to rechallenge,” Infection and Immunity, vol. 73, no. 8, pp. 5173–5182, 2005. View at Publisher · View at Google Scholar · View at Scopus
  8. S. van Hemert, A. J. W. Hoekman, M. A. Smits, and J. M. J. Rebel, “Gene expression responses to a Salmonella infection in the chicken intestine differ between lines,” Veterinary Immunology and Immunopathology, vol. 114, no. 3-4, pp. 247–258, 2006. View at Publisher · View at Google Scholar · View at Scopus
  9. S. van Hemert, A. J. W. Hoekman, M. A. Smits, and J. M. J. Rebel, “Early host gene expression responses to a Salmonella infection in the intestine of chickens with different genetic background examined with cDNA and oligonucleotide microarrays,” Comparative Biochemistry and Physiology D, vol. 1, no. 3, pp. 292–299, 2006. View at Publisher · View at Google Scholar · View at Scopus
  10. S. van Hemert, A. J. W. Hoekman, M. A. Smits, and J. M. J. Rebel, “Immunological and gene expression responses to a Salmonella infection in the chicken intestine,” Veterinary Research, vol. 38, no. 1, pp. 51–63, 2007. View at Publisher · View at Google Scholar · View at Scopus
  11. D. Schokker, D.-J. de Koning, J. M. J. Rebel, and M. A. Smits, “Shift in chicken intestinal gene association networks after infection with Salmonella,” Comparative Biochemistry and Physiology D, vol. 6, no. 4, pp. 339–347, 2011. View at Publisher · View at Google Scholar · View at Scopus
  12. C. C. Lee, C. C. Wu, and T. L. Lin, “Characterization of chicken melanoma differentiation-associated gene 5 (MDA5) from alternative translation initiation,” Comparative Immunology, Microbiology & Infectious Diseases, vol. 35, pp. 335–343, 2012. View at Google Scholar
  13. L. Lian, C. Ciraci, G. Chang, J. Hu, and S. J. Lamont, “NLRC5 knockdown in chicken macrophages alters response to LPS and poly (I:C) stimulation,” BMC Veterinary Research, vol. 8, article 23, 2012. View at Publisher · View at Google Scholar · View at Scopus
  14. H. Oshiumi, M. Matsumoto, K. Funami, T. Akazawa, and T. Seya, “TICAM-1, an adaptor molecule that participates in Toll-like receptor 3-mediated interferon-β induction,” Nature Immunology, vol. 4, no. 2, pp. 161–167, 2003. View at Publisher · View at Google Scholar · View at Scopus
  15. C. Chunmei, S. Yao, T. Maoyan, L. Jinhua, Z. Rongchun, and J. Cheng, “Effects of levels of dietary protein and lysine on growth and meat quality of AA broilers,” Journal of China Agricultural University, vol. 11, article 5, 2006. View at Google Scholar
  16. Y. Gu, Y. Xia, Q. Chen, W. Sha, H. Dai, and J. Zhu, “Affection of fattening in Growth stage of the Langshan Breed,” Journal of Yangtze University, vol. 6, article 3, 2009. View at Google Scholar
  17. W. Xinsheng, C. Guohong, C. Kuanwei, W. Kehua, and C. Hong, “Comparison on histologic characteristics of muscle and muscle quality in Chinese native chickens,” Journal of Yangzhou University, vol. 1998, article 7, 1998. View at Google Scholar
  18. M. F. Te Pas, I. Hulsegge, D. Schokker et al., “Meta-analysis of chicken—Salmonella infection experiments,” BMC Genomics, vol. 13, article 146, 2012. View at Google Scholar
  19. D. Schokker, T. H. F. Peters, A. J. W. Hoekman, J. M. J. Rebel, and M. A. Smits, “Differences in the early response of hatchlings of different chicken breeding lines to Salmonella enterica serovar Enteritidis infection,” Poultry Science, vol. 91, no. 2, pp. 346–353, 2012. View at Publisher · View at Google Scholar · View at Scopus
  20. B. M. Bolstad, R. A. Irizarry, M. Åstrand, and T. P. Speed, “A comparison of normalization methods for high density oligonucleotide array data based on variance and bias,” Bioinformatics, vol. 19, no. 2, pp. 185–193, 2003. View at Publisher · View at Google Scholar · View at Scopus
  21. D. W. Huang, B. T. Sherman, and R. A. Lempicki, “Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources,” Nature Protocols, vol. 4, no. 1, pp. 44–57, 2009. View at Publisher · View at Google Scholar · View at Scopus
  22. M. W. Pfaffl, “A new mathematical model for relative quantification in real-time RT-PCR,” Nucleic Acids Research, vol. 29, no. 9, article e45, 2001. View at Google Scholar · View at Scopus
  23. M. W. Pfaffl, G. W. Horgan, and L. Dempfle, “Relative expression software tool (REST) for group-wise comparison and statistical analysis of relative expression results in real-time PCR,” Nucleic acids research, vol. 30, no. 9, article e36, 2002. View at Google Scholar · View at Scopus
  24. J. P. Boettcher, M. Kirchner, Y. Churin et al., “Tyrosine-phosphorylated caveolin-1 blocks bacterial uptake by inducing Vav2-RhoA-mediated cytoskeletal rearrangements,” PLoS Biology, vol. 8, no. 8, pp. 55–56, 2010. View at Publisher · View at Google Scholar · View at Scopus
  25. T. Nitto, K. D. Dyer, M. Czapiga, and H. F. Rosenberg, “Evolution and function of leukocyte RNase A ribonucleases of the avian species, Gallus gallus,” Journal of Biological Chemistry, vol. 281, no. 35, pp. 25622–25634, 2006. View at Publisher · View at Google Scholar · View at Scopus
  26. E. Ostergaard, M. Duno, M. Batbayli, K. Vilhelmsen, and T. Rosenberg, “A novel MERTK deletion is a common founder mutation in the faroe islands and is responsible for a high proportion of retinitis pigmentosa cases,” Molecular Vision, vol. 17, pp. 1485–1492, 2011. View at Google Scholar · View at Scopus
  27. R. M. A. Linger, A. K. Keating, H. S. Earp, and D. K. Graham, “TAM receptor tyrosine kinases: biologic functions, signaling, and potential therapeutic targeting in human cancer,” Advances in Cancer Research, vol. 100, pp. 35–83, 2008. View at Publisher · View at Google Scholar · View at Scopus
  28. C. Wang, Z. Liu, and X. Huang, “Rab32 is important for autophagy and lipid storage in drosophila,” PLoS ONE, vol. 7, no. 2, Article ID e32086, 2012. View at Publisher · View at Google Scholar · View at Scopus
  29. J. J. Bultema, A. L. Ambrosio, C. L. Burek, and S. M. di Pietro, “BLOC-2, AP-, and AP-1 proteins function in concert with Rab38 and Rab32 proteins to mediate protein trafficking to lysosome-related organelles,” The Journal of Biological Chemistry, vol. 287, no. 23, pp. 19550–19563, 2012. View at Google Scholar
  30. F. R. Zhang, H. Liu, S. M. Chen et al., “Identification of two new loci at IL23R and RAB32 that influence susceptibility to leprosy,” Nature Genetics, vol. 43, no. 12, pp. 1247–1251, 2011. View at Publisher · View at Google Scholar · View at Scopus
  31. Y. Li, E. Pohl, R. Boulouiz et al., “Mutations in TPRN cause a progressive form of autosomal-recessive nonsyndromic hearing loss,” American Journal of Human Genetics, vol. 86, no. 3, pp. 479–484, 2010. View at Publisher · View at Google Scholar · View at Scopus
  32. N. Shimizu, S. Noda, K. Katayama, H. Ichikawa, H. Kodama, and H. Miyoshi, “Identification of genes potentially involved in supporting hematopoietic stem cell activity of stromal cell line MC3T3-G2/PA6,” International Journal of Hematology, vol. 87, no. 3, pp. 239–245, 2008. View at Publisher · View at Google Scholar · View at Scopus
  33. O. Rosnet, C. Blanco-Betancourt, K. Grivel, K. Richter, and C. Schiff, “Binding of free immunoglobulin light chains to VpreB3 inhibits their maturation and secretion in chicken B cells,” Journal of Biological Chemistry, vol. 279, no. 11, pp. 10228–10236, 2004. View at Publisher · View at Google Scholar · View at Scopus
  34. C. H. Wong, G. W. Y. Mak, M. S. Li, and S. K. W. Tsui, “The LIM-only protein FHL2 regulates interleukin-6 expression through p38 MAPK mediated NF-kappa B pathway in muscle cells,” Cytokine, vol. 59, pp. 286–293, 2012. View at Google Scholar
  35. N. Ohsawa, M. Koebis, S. Suo, I. Nishino, and S. Ishiura, “Alternative splicing of PDLIM3/ALP, for α-actinin-associated LIM protein 3, is aberrant in persons with myotonic dystrophy,” Biochemical and Biophysical Research Communications, vol. 409, no. 1, pp. 64–69, 2011. View at Publisher · View at Google Scholar · View at Scopus
  36. H. A. Vanderven, K. Petkau, K. E. E. Ryan-Jean, J. R. Aldridge Jr., R. G. Webster, and K. E. Magor, “Avian influenza rapidly induces antiviral genes in duck lung and intestine,” Molecular Immunology, vol. 51, no. 3-4, pp. 316–324, 2012. View at Publisher · View at Google Scholar · View at Scopus
  37. R. Øvstebø, O. K. Olstad, B. Brusletto et al., “Identification of genes particularly sensitive to lipopolysaccharide (LPS) in human monocytes induced by wild-type versus LPS-deficient Neisseria meningitidis strains,” Infection and Immunity, vol. 76, no. 6, pp. 2685–2695, 2008. View at Publisher · View at Google Scholar · View at Scopus
  38. S. Daffis, K. J. Szretter, J. Schriewer et al., “2′-O methylation of the viral mRNA cap evades host restriction by IFIT family members,” Nature, vol. 468, no. 7322, pp. 452–456, 2010. View at Publisher · View at Google Scholar · View at Scopus
  39. V. L. Alcón, C. Luther, D. Balce, and F. Takei, “B-cell co-receptor CD72 is expressed on NK cells and inhibits IFN-γ production but not cytotoxicity,” European Journal of Immunology, vol. 39, no. 3, pp. 826–832, 2009. View at Publisher · View at Google Scholar · View at Scopus
  40. M. M. Miller, R. Goto, S. Young, J. Chirivella, D. Hawke, and C. G. Miyada, “Immunoglobulin variable-region-like domains of diverse sequence within the major histocompatibility complex of the chicken,” Proceedings of the National Academy of Sciences of the United States of America, vol. 88, no. 10, pp. 4377–4381, 1991. View at Google Scholar · View at Scopus
  41. E. Ambrosi, S. Capaldi, M. Bovi, G. Saccomani, M. Perduca, and H. L. Monaco, “Structural changes in the BH3 domain of SOUL protein upon interaction with the anti-apoptotic protein Bcl-xL,” Biochemical Journal, vol. 438, no. 2, pp. 291–301, 2011. View at Publisher · View at Google Scholar · View at Scopus
  42. P. Garred, C. Honoré, Y. J. Ma et al., “The genetics of ficolins,” Journal of Innate Immunity, vol. 2, no. 1, pp. 3–16, 2009. View at Publisher · View at Google Scholar · View at Scopus
  43. M. Clements, S. Eriksson, D. Tezcan-Merdol, J. C. D. Hinton, and M. Rhen, “Virulence gene regulation in Salmonella enterica,” Annals of Medicine, vol. 33, no. 3, pp. 178–185, 2001. View at Google Scholar · View at Scopus
  44. L. Vervelde, S. S. Reemers, D. A. van Haarlem et al., “Chicken dendritic cells are susceptible to highly pathogenic avian influenza viruses which induce strong cytokine responses,” Developmental & Comparative Immunology, vol. 39, pp. 198–206, 2013. View at Google Scholar
  45. S. P. Schoenberger, B. Pulendran, and P. D. Katsikis, “4th aegean conference on the crossroads between innate and adaptive immunity,” Nature Immunology, vol. 13, no. 1, pp. 7–10, 2012. View at Publisher · View at Google Scholar · View at Scopus
  46. A. M. Setta, P. A. Barrow, P. Kaiser, and M. A. Jones, “Early immune dynamics following infection with Salmonella enterica serovars Enteritidis, Infantis, Pullorum and Gallinarum: cytokine and chemokine gene expression profile and cellular changes of chicken cecal tonsils,” Comparative Immunology, Microbiology and Infectious Diseases, vol. 35, no. 5, pp. 397–410, 2012. View at Publisher · View at Google Scholar · View at Scopus
  47. H. Zola, “Medical applications of leukocyte surface molecules—The CD molecules,” Molecular Medicine, vol. 12, no. 11-12, pp. 312–316, 2006. View at Publisher · View at Google Scholar · View at Scopus
  48. H. S. Lillehoj, W. Min, K. D. Choi et al., “Molecular, cellular, and functional characterization of chicken cytokines homologous to mammalian IL-15 and IL-2,” Veterinary Immunology and Immunopathology, vol. 82, no. 3-4, pp. 229–244, 2001. View at Publisher · View at Google Scholar · View at Scopus
  49. K. Johnson, J. Chaumeil, M. Micsinai et al., “IL-7 functionally segregates the Pro-B cell stage by regulating transcription of recombination mediators across cell cycle,” Journal of Immunology, vol. 188, pp. 6084–6092, 2012. View at Google Scholar
  50. D. F. Yang, M. Thangaraju, K. Greeneltch et al., “Repression of IFN regulatory factor 8 by DNA methylation is a molecular determinant of apoptotic resistance and metastatic phenotype in metastatic tumor cells,” Cancer Research, vol. 67, no. 7, pp. 3301–3309, 2007. View at Publisher · View at Google Scholar · View at Scopus
  51. D. F. Yang, S. Wang, C. Brooks et al., “IFN regulatory factor 8 sensitizes soft tissue sarcoma cells to death receptor-initiated apoptosis via repression of FLICE-like protein expression,” Cancer Research, vol. 69, no. 3, pp. 1080–1088, 2009. View at Publisher · View at Google Scholar · View at Scopus
  52. C. Osipo, T. E. Golde, B. A. Osborne, and L. A. Miele, “Off the beaten pathway: the complex cross talk between Notch and NF-κB,” Laboratory Investigation, vol. 88, no. 1, pp. 11–17, 2008. View at Publisher · View at Google Scholar · View at Scopus
  53. S. Wheaton, M. D. Lambourne, A. J. Sarson, J. T. Brisbin, A. Mayameei, and S. Sharif, “Molecular cloning and expression analysis of chicken MyD88 and TRIF genes,” DNA Sequence, vol. 18, no. 6, pp. 478–484, 2007. View at Publisher · View at Google Scholar · View at Scopus
  54. J. J. Díez and P. Iglesias, “The role of the novel adipocyte-derived hormone adiponectin in human disease,” European Journal of Endocrinology, vol. 148, no. 3, pp. 293–300, 2003. View at Publisher · View at Google Scholar · View at Scopus
  55. M. S. Gibson, M. Fife, S. Bird, N. Salmon, and P. Kaiser, “Identification, cloning, and functional characterization of the IL-1 receptor antagonist in the chicken reveal important differences between the chicken and mammals,” The Journal of Immunology, vol. 189, pp. 539–550, 2012. View at Google Scholar
  56. A. J. Karpala, C. Stewart, J. McKay, J. W. Lowenthal, and A. G. D. Bean, “Characterization of chicken Mda5 activity: regulation of IFN-β in the absence of RIG-I functionality,” Journal of Immunology, vol. 186, no. 9, pp. 5397–5405, 2011. View at Publisher · View at Google Scholar · View at Scopus
  57. A. M. Keestra, M. R. de Zoete, L. I. Bouwman, and J. P. M. van Putten, “Chicken TLR21 is an innate CpG DNA receptor distinct from mammalian TLR9,” Journal of Immunology, vol. 185, no. 1, pp. 460–467, 2010. View at Publisher · View at Google Scholar · View at Scopus