Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2014 (2014), Article ID 160980, 11 pages
http://dx.doi.org/10.1155/2014/160980
Research Article

Studies on the Antidiabetic Activities of Cordyceps militaris Extract in Diet-Streptozotocin-Induced Diabetic Sprague-Dawley Rats

1College of Life Science, Jilin University, Changchun 130012, China
2College of Clinical Medicine, Jilin University, Changchun 130012, China
3College of Life Science, Zhuhai College of Jilin University, Zhuhai 519000, China

Received 3 December 2013; Revised 29 January 2014; Accepted 30 January 2014; Published 11 March 2014

Academic Editor: Gabriel F. Anhe

Copyright © 2014 Yuan Dong et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. W. Kerner and J. Bruckel, “Definition, diagnosis and classification of diabetes mellitus,” Diabetologie und Stoffwechsel, vol. 7, pp. S84–S87, 2011. View at Google Scholar
  2. Z. Cao and M. Cooper, “Pathogenesis of diabetic nephropathy,” Journal of Diabetes Investigation, vol. 2, no. 4, pp. 243–247, 2011. View at Publisher · View at Google Scholar
  3. G. Winkler, T. Hidvegi, G. Vandorfi et al., “Risk-stratified screening for type 2 diabetes in adult subjects: results from Hungary,” Diabetologia, vol. 54, pp. S119–S120, 2011. View at Google Scholar
  4. B. A. Levterova, D. D. Dimitrova, G. E. Levterov et al., “Instruments for disease-specific quality-of-life measurement in patients with type 2 diabetes mellitus—a systematic review,” Folia Medica, vol. 55, no. 1, pp. 83–92, 2013. View at Google Scholar
  5. D. S. Kania, J. D. Gonzalvo, and Z. A. Weber, “Saxagliptin: a clinical review in the treatment of type 2 diabetes mellitus,” Clinical Therapeutics, vol. 33, no. 8, pp. 1005–1022, 2011. View at Publisher · View at Google Scholar · View at Scopus
  6. A. Fuangchan, P. Sonthisombat, T. Seubnukarn et al., “Hypoglycemic effect of bitter melon compared with metformin in newly diagnosed type 2 diabetes patients,” Journal of Ethnopharmacology, vol. 134, no. 2, pp. 422–428, 2011. View at Publisher · View at Google Scholar · View at Scopus
  7. P. Andújar-Plata, X. Pi-Sunyer, and B. Laferrère, “Metformin effects revisited,” Diabetes Research and Clinical Practice, vol. 95, no. 1, pp. 1–9, 2012. View at Publisher · View at Google Scholar · View at Scopus
  8. A. Scheen, “Antidiabetic agents in subjects with mild dysglycaemia: prevention or early treatment of type 2 diabetes?” Diabetes & Metabolism, vol. 33, no. 1, pp. 3–12, 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. D. Shyangdan, E. Cummins, P. Royle et al., “Liraglutide for the treatment of type 2 diabetes,” Health Technology Assessment, vol. 15, supplement 1, pp. 77–86, 2011. View at Google Scholar
  10. M. Novak and V. Vetvicka, “β-glucans, history, and the present: immunomodulatory aspects and mechanisms of action,” Journal of Immunotoxicology, vol. 5, no. 1, pp. 47–57, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. M. Tanaka, E. Misawa, Y. Ito et al., “Identification of five phytosterols from aloe vera gel as anti-diabetic compounds,” Biological and Pharmaceutical Bulletin, vol. 29, no. 7, pp. 1418–1422, 2006. View at Publisher · View at Google Scholar · View at Scopus
  12. P. Kamtchouing, S. M. Kahpui, P. D. Dzeufiet, L. Tédong, E. A. Asongalem, and T. Dimo, “Anti-diabetic activity of methanol/methylene chloride stem bark extracts of Terminalia superba and Canarium schweinfurthii on streptozotocin-induced diabetic rats,” Journal of Ethnopharmacology, vol. 104, no. 3, pp. 306–309, 2006. View at Publisher · View at Google Scholar · View at Scopus
  13. S. Li, K. Zhao, Z. Ji et al., “A polysaccharide isolated from Cordyceps sinensis, a traditional Chinese medicine, protects PC12 cells against hydrogen peroxide-induced injury,” Life Sciences, vol. 73, no. 19, pp. 2503–2513, 2003. View at Publisher · View at Google Scholar · View at Scopus
  14. C. S. Kim, S.-Y. Lee, S.-H. Cho et al., “Cordyceps militaris induces the IL-18 expression via its promoter activation for IFN-γ production,” Journal of Ethnopharmacology, vol. 120, no. 3, pp. 366–371, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. R. R. Paterson, “Cordyceps: a traditional traditional Chinese medicine and another fungal therapeutic biofactory?” Phytochemistry, vol. 69, no. 7, pp. 1469–1495, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. G. Zhang, Y. Huang, Y. Bian, J. H. Wong, T. B. Ng, and H. Wang, “Hypoglycemic activity of the fungi Cordyceps militaris, Cordyceps sinensis, Tricholoma mongolicum, and Omphalia lapidescens in streptozotocin-induced diabetic rats,” Applied Microbiology and Biotechnology, vol. 72, no. 6, pp. 1152–1156, 2006. View at Publisher · View at Google Scholar · View at Scopus
  17. Y. W. Cheng, Y. I. Chen, C. Y. Tzeng et al., “Extracts of Cordyceps militaris lower blood glucose via the stimulation of cholinergic activation and insulin secretion in normal rats,” Phytotherapy Research, vol. 26, no. 8, pp. 1173–1177, 2012. View at Publisher · View at Google Scholar · View at Scopus
  18. J. H. Koh, J. M. Kim, U. J. Chang, and H.-J. Suh, “Hypocholesterolemic effect of hot-water extract from mycelia of Cordyceps sinensis,” Biological and Pharmaceutical Bulletin, vol. 26, no. 1, pp. 84–87, 2003. View at Publisher · View at Google Scholar · View at Scopus
  19. Y. Wang, H. P. Yin, X. B. Lv, Y. Wang, H. Gao, and M. Wang, “Protection of chronic renal failure by a polysaccharide from Cordyceps sinensis,” Fitoterapia, vol. 81, no. 5, pp. 397–402, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. L. Du, J. Song, H. Wang et al., “Optimization of the fermentation medium for Paecilomyces tenuipes N45 using statistical approach,” African Journal of Microbiology Research, vol. 6, no. 32, pp. 6130–6141, 2012. View at Google Scholar
  21. H. Yan, D. Zhu, D. Xu, J. Wu, and X. Bian, “A study on Cordyceps militaris polysaccharide purification, composition and activity analysis,” African Journal of Biotechnology, vol. 7, no. 22, pp. 4004–4009, 2008. View at Google Scholar · View at Scopus
  22. J. S. Wang, W. Zhang, D. Zhu, X. Zhu, X. Pang, and W. Qu, “Hypolipidaemic and hypoglycaemic effects of total flavonoids from seed residues of Hippophae rhamnoides L. in mice fed a high-fat diet,” Journal of the Science of Food and Agriculture, vol. 91, no. 8, pp. 1446–1451, 2011. View at Publisher · View at Google Scholar · View at Scopus
  23. T. Frode and Y. Medeiros, “Animal models to test drugs with potential antidiabetic activity,” Journal of Ethnopharmacology, vol. 115, no. 2, pp. 173–183, 2008. View at Publisher · View at Google Scholar · View at Scopus
  24. I. Federiuk, H. Casey, M. Quinn et al., “Induction of type-1 diabetes mellitus in laboratory rats by use of alloxan: route of administration, pitfalls, and insulin treatment,” Comparative Medicine, vol. 54, no. 3, pp. 252–257, 2004. View at Google Scholar
  25. R. Subramanian, M. Z. Asmawi, and A. Sadikun, “In vitroα-glucosidase and α-amylase enzyme inhibitory effects of Andrographis paniculata extract and andrographolide,” Acta Biochimica Polonica, vol. 55, no. 2, pp. 391–398, 2008. View at Google Scholar · View at Scopus
  26. J. Espada, P. Valverde, and J. C. Stockert, “Selective fluorescence of eosinophilic structures in grasshopper and mammalian testis sustained with haematoxylin-eosin,” Histochemistry, vol. 99, no. 5, pp. 385–390, 1993. View at Publisher · View at Google Scholar · View at Scopus
  27. J. H. Park, N. S. Park, S. M. Lee, and E. Park, “Effect of dongchunghacho rice on blood glucose level, lipid profile, and antioxidant metabolism in streptozotocin-induced diabetic rats,” Food Science and Biotechnology, vol. 20, no. 4, pp. 933–940, 2011. View at Publisher · View at Google Scholar · View at Scopus
  28. S. Adewole, T. Adenowo, T. Naicker et al., “Hypoglycaemic and hypotensive effects of ficus exasperata vahl. (moraceae) leaf aqueous extract in rats,” African Journal of Traditional, Complementary and Alternative Medicines, vol. 8, no. 3, pp. 275–283, 2011. View at Google Scholar
  29. B. S. Wang, C. P. Lee, Z. T. Chen, H. M. Yu, and P.-D. Duh, “Comparison of the hepatoprotective activity between cultured Cordyceps militaris and natural Cordyceps sinensis,” Journal of Functional Foods, vol. 4, no. 2, pp. 489–495, 2012. View at Publisher · View at Google Scholar · View at Scopus
  30. G. Kumar, A. Shetty, and P. Salimath, “Modulatory effect of bitter gourd (Momordica charantia LINN.) on alterations in kidney heparan sulfate in streptozotocin-induced diabetic rats,” Journal of Ethnopharmacology, vol. 115, no. 2, pp. 276–283, 2008. View at Publisher · View at Google Scholar · View at Scopus
  31. P. O'Connell, M. Taba, A. Nomizo et al., “Effects of periodontal therapy on glycemic control and inflammatory markers,” Journal of Periodontology, vol. 79, no. 5, pp. 774–783, 2008. View at Publisher · View at Google Scholar · View at Scopus
  32. I. D. Federation, “Diabetes and the millennium development goals International Diabetes Federation,” Diabetes Research and Clinical Practice, vol. 100, no. 3, pp. 409–410, 2013. View at Publisher · View at Google Scholar
  33. H. Choi, M. Kang, S. Jeong et al., “Effect of Dongchunghacho (Cordyceps militaris) on hyperglycemia and dyslipidemia in type 2 diabetic db/db mice,” Food Science and Biotechnology, vol. 21, no. 4, pp. 1157–1162, 2012. View at Publisher · View at Google Scholar
  34. K. Dhawan, S. Kumar, and A. Sharma, “Suppression of alcohol-cessation-oriented hyper-anxiety by the benzoflavone moiety of Passiflora incarnata Linneaus in mice,” Journal of Ethnopharmacology, vol. 81, no. 2, pp. 239–244, 2002. View at Publisher · View at Google Scholar · View at Scopus
  35. B. O'Callaghan, S. Koo, Y. Wu, H. C. Freake, and H. C. Towle, “Glucose regulation of the Acetyl-CoA carboxylase promoter PI in rat hepatocytes,” Journal of Biological Chemistry, vol. 276, no. 19, pp. 16033–16039, 2001. View at Publisher · View at Google Scholar · View at Scopus
  36. J. Zhao, W. Zhang, X. Zhu et al., “The aqueous extract of Asparagus officinalis L. by-product exerts hypoglycaemic activity in streptozotocin-induced diabetic rats,” Journal of the Science of Food and Agriculture, vol. 91, no. 11, pp. 2095–2099, 2011. View at Publisher · View at Google Scholar · View at Scopus
  37. K.-C. Shih, C.-F. Kwok, C.-M. Hwu et al., “Acipimox attenuates hypertriglyceridemia in dyslipidemic noninsulin dependent diabetes mellitus patients without perturbation of insulin sensitivity and glycemic control,” Diabetes Research and Clinical Practice, vol. 36, no. 2, pp. 113–119, 1997. View at Publisher · View at Google Scholar · View at Scopus
  38. S. B. Choi, C. H. Park, M. K. Choi, D. W. Jun, and S. Park, “Improvement of insulin resistance and insulin secretion by water extracts of Cordyceps militaris, Phellinus linteus, and Paecilomyces tenuipes in 90% pancreatectomized rats,” Bioscience, Biotechnology and Biochemistry, vol. 68, no. 11, pp. 2257–2264, 2004. View at Publisher · View at Google Scholar · View at Scopus
  39. J. W. Baynes and S. R. Thorpe, “The role of oxidative stress in diabetic complications,” Current Opinion in Endocrinology and Diabetes, vol. 3, no. 4, pp. 277–284, 1996. View at Google Scholar · View at Scopus
  40. N. P. Suryawanshi, A. K. Bhutey, A. N. Nagdeote, A. A. Jadhav, and G. S. Manoorkar, “Study of lipid peroxide and lipid profile in diabetes mellitus,” Indian Journal of Clinical Biochemistry, vol. 21, no. 1, pp. 126–130, 2006. View at Publisher · View at Google Scholar · View at Scopus
  41. H.-L. Chu, J.-C. Chien, and P.-D. Duh, “Protective effect of Cordyceps militaris against high glucose-induced oxidative stress in human umbilical vein endothelial cells,” Food Chemistry, vol. 129, no. 3, pp. 871–876, 2011. View at Publisher · View at Google Scholar · View at Scopus
  42. C. van Dijk and T. Berl, “Pathogenesis of diabetic nephropathy,” Reviews in Endocrine & Metabolic Disorders, vol. 5, no. 3, pp. 237–248, 2004. View at Publisher · View at Google Scholar · View at Scopus
  43. X. Zhou and Y. Yao, “Unexpected nephrotoxicity in male ablactated rats induced by Cordyceps militaris: the involvement of oxidative changes,” Evidence-Based Complementary and Alternative Medicine, vol. 2013, Article ID 786528, 9 pages, 2013. View at Publisher · View at Google Scholar
  44. P. Fioretto and M. Mauer, “Histopathology of diabetic nephropathy,” Seminars in Nephrology, vol. 27, no. 2, pp. 195–207, 2007. View at Publisher · View at Google Scholar · View at Scopus
  45. M. A. Valentovic, N. Alejandro, A. Betts Carpenter, P. I. Brown, and K. Ramos, “Streptozotocin (STZ) diabetes enhances benzo(α)pyrene induced renal injury in Sprague Dawley rats,” Toxicology Letters, vol. 164, no. 3, pp. 214–220, 2006. View at Publisher · View at Google Scholar · View at Scopus
  46. Y.-C. Lei, J.-S. Hwang, C.-C. Chan, C.-T. Lee, and T.-J. Cheng, “Enhanced oxidative stress and endothelial dysfunction in streptozotocin-diabetic rats exposed to fine particles,” Environmental Research, vol. 99, no. 3, pp. 335–343, 2005. View at Publisher · View at Google Scholar · View at Scopus
  47. T. Kiho, A. Yamane, J. Hui et al., “Polysaccharides in fungi. XXXVI.1 Hypoglycemic activity of a polysaccharide (CS-F30) from the cultural mycelium of Cordyceps sinensis and its effect on glucose metabolism in mouse liver,” Biological and Pharmaceutical Bulletin, vol. 19, no. 2, pp. 294–296, 1996. View at Google Scholar · View at Scopus
  48. W.-C. Kan, H.-Y. Wang, C.-C. Chien et al., “Effects of extract from solid-state fermented Cordyceps sinensis on type 2 diabetes mellitus,” Evidence-Based Complementary and Alternative Medicine, vol. 2012, Article ID 743107, 10 pages, 2012. View at Publisher · View at Google Scholar · View at Scopus
  49. S. P. Li, G. H. Zhang, Q. Zeng et al., “Hypoglycemic activity of polysaccharide, with antioxidation, isolated from cultured Cordyceps mycelia,” Phytomedicine, vol. 13, no. 6, pp. 428–433, 2006. View at Publisher · View at Google Scholar
  50. T. Nakamura, T. Terajima, T. Ogata et al., “Establishment and pathophysiological characterization of type 2 diabetic mouse model produced by streptozotocin and nicotinamide,” Biological and Pharmaceutical Bulletin, vol. 29, no. 6, pp. 1167–1174, 2006. View at Publisher · View at Google Scholar · View at Scopus
  51. S. Zhao, Y. Chu, C. Zhang et al., “Diet-induced central obesity and insulin resistance in rabbits,” Journal of Animal Physiology and Animal Nutrition, vol. 92, no. 1, pp. 105–111, 2008. View at Publisher · View at Google Scholar · View at Scopus
  52. M. Zhang, X. Y. Lv, J. Li, Z.-G. Xu, and L. Chen, “The characterization of high-fat diet and multiple low-dose streptozotocin induced type 2 diabetes rat model,” Experimental Diabetes Research, vol. 2008, Article ID 704045, 9 pages, 2008. View at Publisher · View at Google Scholar · View at Scopus