Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2014, Article ID 162928, 10 pages
http://dx.doi.org/10.1155/2014/162928
Research Article

Sulfa Drugs as Inhibitors of Carbonic Anhydrase: New Targets for the Old Drugs

1Department of Chemistry, Forman Christian College (A Chartered University), Ferozepur Road, Lahore 54600, Pakistan
2Centre for Advanced Drug Research, COMSATS Institute of Information Technology, Abbottabad 22060, Pakistan

Received 28 February 2014; Revised 19 June 2014; Accepted 15 July 2014; Published 8 September 2014

Academic Editor: Anna Di Fiore

Copyright © 2014 Mariya al-Rashida et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. B. C. Tripp, K. Smith, and J. G. Ferry, “Carbonic anhydrase: new insights for an ancient enzyme,” The Journal of Biological Chemistry, vol. 276, no. 52, pp. 48615–48618, 2001. View at Publisher · View at Google Scholar · View at Scopus
  2. S. Breton, “The cellular physiology of carbonic anhydrases,” Journal of the Pancreas, vol. 2, no. 4, pp. 159–164, 2001. View at Google Scholar · View at Scopus
  3. R. P. Henry, “Multiple roles of carbonic anhydrase in cellular transport and metabolism,” Annual Review of Physiology, vol. 58, pp. 523–538, 1996. View at Publisher · View at Google Scholar · View at Scopus
  4. C. J. Lynch, H. Fox, S. A. Hazen, B. A. Stanley, S. Dodgson, and K. F. Lanoue, “Role of hepatic carbonic anhydrase in de novo lipogenesis,” Biochemical Journal, vol. 310, no. 1, pp. 197–202, 1995. View at Google Scholar · View at Scopus
  5. S. A. Hazen, A. Waheed, W. S. Sly, K. F. LaNoue, and C. J. Lynch, “Differentiation-dependent expression of CA V and the role of carbonic anhydrase isozymes in pyruvate carboxylation in adipocytes,” The FASEB Journal, vol. 10, no. 4, pp. 481–490, 1996. View at Google Scholar · View at Scopus
  6. G. N. Shah, T. S. Rubbelke, J. Hendin et al., “Targeted mutagenesis of mitochondrial carbonic anhydrases VA and VB implicates both enzymes in ammonia detoxification and glucose metabolism,” Proceedings of the National Academy of Sciences of the United States of America, vol. 110, no. 18, pp. 7423–7428, 2013. View at Publisher · View at Google Scholar · View at Scopus
  7. S. J. Dodgson and K. Cherian, “Mitochondrial carbonic anhydrase is involved in rat renal glucose synthesis,” American Journal of Physiology—Endocrinology and Metabolism, vol. 257, pp. E791–E796, 1989. View at Google Scholar · View at Scopus
  8. V. Alterio, A. di Fiore, K. D'Ambrosio, C. T. Supuran, and G. de Simone, “Multiple binding modes of inhibitors to carbonic anhydrases: how to design specific drugs targeting 15 different isoforms?” Chemical Reviews, vol. 112, no. 8, pp. 4421–4468, 2012. View at Publisher · View at Google Scholar · View at Scopus
  9. J. P. Kirkpatrick, Z. N. Rabbani, R. C. Bentley et al., “Elevated CAIX expression is associated with an increased risk of distant failure in early-stage cervical cancer,” Biomarker Insights, vol. 2008, no. 3, pp. 45–55, 2008. View at Google Scholar · View at Scopus
  10. T. Dorai, I. S. Sawczuk, J. Pastorek, P. H. Wiernik, and J. P. Dutcher, “The role of carbonic anhydrase IX overexpression in kidney cancer,” European Journal of Cancer, vol. 41, no. 18, pp. 2935–2947, 2005. View at Publisher · View at Google Scholar · View at Scopus
  11. A. Scozzafava and C. T. Supuran, “Glaucoma and the applications of carbonic anhydrase inhibitors,” Subcellular Biochemistry, vol. 75, pp. 349–359, 2014. View at Google Scholar
  12. C. T. Supuran and A. Scozzafava, “Carbonic anhydrases as targets for medicinal chemistry,” Bioorganic & Medicinal Chemistry, vol. 15, no. 13, pp. 4336–4350, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. C. T. Supuran, A. di Fiore, and G. de Simone, “Carbonic anhydrase inhibitors as emerging drugs for the treatment of obesity,” Expert Opinion on Emerging Drugs, vol. 13, no. 2, pp. 383–392, 2008. View at Publisher · View at Google Scholar · View at Scopus
  14. A. Scozzafava, C. T. Supuran, and F. Carta, “Antiobesity carbonic anhydrase inhibitors: a literature and patent review,” Expert Opinion on Therapeutic Patents, vol. 23, no. 6, pp. 725–735, 2013. View at Publisher · View at Google Scholar · View at Scopus
  15. G. de Simone and C. T. Supuran, “Antiobesity carbonic anhydrase inhibitors,” Current Topics in Medicinal Chemistry, vol. 7, no. 9, pp. 879–884, 2007. View at Publisher · View at Google Scholar · View at Scopus
  16. G. de Simone, A. Dio Fiore, and C. T. Supuran, “Are carbonic anhydrase inhibitors suitable for obtaining antiobesity drugs?” Current Pharmaceutical Design, vol. 14, no. 7, pp. 655–660, 2008. View at Publisher · View at Google Scholar · View at Scopus
  17. C. T. Supuran, “Inhibition of bacterial carbonic anhydrases and zinc proteases: from orphan targets to innovative new antibiotic drugs,” Current Medicinal Chemistry, vol. 19, no. 6, pp. 831–844, 2012. View at Publisher · View at Google Scholar · View at Scopus
  18. C. T. Supuran and A. Scozzafava, “Carbonic anhydrase inhibitors: aromatic sulfonamides and disulfonamides act as efficient tumor growth inhibitors,” Journal of Enzyme Inhibition, vol. 15, no. 6, pp. 597–610, 2000. View at Publisher · View at Google Scholar · View at Scopus
  19. S. Pastorekova, M. Zatovicova, and J. Pastorek, “Cancer-associated carbonic anhydrases and their inhibition,” Current Pharmaceutical Design, vol. 14, no. 7, pp. 685–698, 2008. View at Publisher · View at Google Scholar · View at Scopus
  20. A. Thiry, J.-M. Dogné, B. Masereel, and C. T. Supuran, “Targeting tumor-associated carbonic anhydrase IX in cancer therapy,” Trends in Pharmacological Sciences, vol. 27, no. 11, pp. 566–573, 2006. View at Publisher · View at Google Scholar · View at Scopus
  21. O. O. Guler, G. de Simone, and C. T. Supuran, “Drug design studies of the novel antitumor targets carbonic anhydrase IX and XII,” Current Medicinal Chemistry, vol. 17, no. 15, pp. 1516–1526, 2010. View at Publisher · View at Google Scholar · View at Scopus
  22. J.-Y. Winum, M. Rami, A. Scozzafava, J.-L. Montero, and C. Supuran, “Carbonic anhydrase IX: a new druggable target for the design of antitumor agents,” Medicinal Research Reviews, vol. 28, no. 3, pp. 445–463, 2008. View at Publisher · View at Google Scholar · View at Scopus
  23. C. T. Supuran, F. Briganti, S. Tilli, W. R. Chegwidden, and A. Scozzafava, “Carbonic anhydrase inhibitors: sulfonamides as antitumor agents?” Bioorganic and Medicinal Chemistry, vol. 9, no. 3, pp. 703–714, 2001. View at Publisher · View at Google Scholar · View at Scopus
  24. C. C. Brackett, H. Singh, and J. H. Block, “Likelihood and mechanisms of cross-allergenicity between sulfonamide antibiotics and other drugs containing a sulfonamide functional group,” Pharmacotherapy, vol. 24, no. 7, pp. 856–870, 2004. View at Publisher · View at Google Scholar · View at Scopus
  25. S. Knowles, L. Shapiro, and N. H. Shear, “Should celecoxib be contraindicated in patients who are allergic to sulfonamides? Revisiting the meaning of “sulfa– allergy,” Drug Safety, vol. 24, no. 4, pp. 239–247, 2001. View at Publisher · View at Google Scholar · View at Scopus
  26. V. Garaj, L. Puccetti, G. Fasolis et al., “Carbonic anhydrase inhibitors: novel sulfonamides incorporating 1,3,5-triazine moieties as inhibitors of the cytosolic and tumour-associated carbonic anhydrase isozymes I, II and IX,” Bioorganic and Medicinal Chemistry Letters, vol. 15, no. 12, pp. 3102–3108, 2005. View at Publisher · View at Google Scholar · View at Scopus
  27. F. Carta, V. Garaj, A. Maresca et al., “Sulfonamides incorporating 1,3,5-triazine moieties selectively and potently inhibit carbonic anhydrase transmembrane isoforms IX, XII and XIV over cytosolic isoforms i and II: solution and X-ray crystallographic studies,” Bioorganic and Medicinal Chemistry, vol. 19, no. 10, pp. 3105–3119, 2011. View at Publisher · View at Google Scholar · View at Scopus
  28. V. Garaj, L. Puccetti, G. Fasolis et al., “Carbonic anhydrase inhibitors: synthesis and inhibition of cytosolic/tumor-associated carbonic anhydrase isozymes I, II, and IX with sulfonamides incorporating 1,2,4-triazine moieties,” Bioorganic & Medicinal Chemistry Letters, vol. 14, no. 21, pp. 5427–5433, 2004. View at Publisher · View at Google Scholar · View at Scopus
  29. Y. Pocker and J. T. Stone, “The catalytic versatility of erythrocyte carbonic anhydrase. III. Kinetic studies of the enzyme-catalyzed hydrolysis of p-nitrophenyl acetate,” Biochemistry, vol. 6, no. 3, pp. 668–678, 1967. View at Publisher · View at Google Scholar · View at Scopus
  30. C. A. Behnke, I. Le Trong, J. W. Godden et al., “Atomic resolution studies of carbonic anhydrase II,” Acta Crystallographica Section D: Biological Crystallography, vol. 66, no. 5, pp. 616–627, 2010. View at Publisher · View at Google Scholar · View at Scopus
  31. R. Saito, T. Sato, A. Ikai, and N. Tanaka, “Structure of bovine carbonic anhydrase II at 1.95 Å resolution,” Acta Crystallographica Section D, vol. 60, no. 4, pp. 792–795, 2004. View at Publisher · View at Google Scholar · View at Scopus
  32. Z. Ul-Haq, S. Usmani, U. Mahmood, M. Al-Rashida, and G. Abbas, “In-silico analysis of chromone containing sulfonamide derivatives as human carbonic anhydrase inhibitors,” Medicinal Chemistry, vol. 9, no. 4, pp. 608–616, 2013. View at Publisher · View at Google Scholar · View at Scopus
  33. E. F. Pettersen, T. D. Goddard, C. C. Huang et al., “UCSF Chimera—a visualization system for exploratory research and analysis,” Journal of Computational Chemistry, vol. 25, no. 13, pp. 1605–1612, 2004. View at Publisher · View at Google Scholar · View at Scopus
  34. J. Wang, W. Wang, P. A. Kollman, and D. A. Case, “Automatic atom type and bond type perception in molecular mechanical calculations,” Journal of Molecular Graphics and Modelling, vol. 25, no. 2, pp. 247–260, 2006. View at Publisher · View at Google Scholar · View at Scopus
  35. ACD/ChemSketch, version 12.01, Advanced Chemistry Development, Inc., Toronto, ON, Canada, 2013, http://www.acdlabs.com/.
  36. http://www.biosolveit.de/LeadIT/.
  37. C. A. M. Afonso, N. M. T. Lourenço, and A. A. de Rosatella, “Synthesis of 2,4,6-tri-substituted-1,3,5-triazines,” Molecules, vol. 11, no. 1, pp. 81–102, 2006. View at Publisher · View at Google Scholar · View at Scopus
  38. P. Zakeri-Milani, H. Tajerzadeh, Z. Islambolchilar, S. Barzegar, and H. Valizadeh, “The relation between molecular properties of drugs and their transport across the intestinal membrane,” Daru, vol. 14, no. 4, pp. 164–171, 2006. View at Google Scholar · View at Scopus
  39. K. Asokkumar, L. T. Prathyusha, M. Umamaheshwari et al., “Design, ADMET and docking studies on some novel chalcone derivatives as soluble epoxide hydrolase enzyme inhibitors,” Journal of the Chilean Chemical Society, vol. 57, no. 4, pp. 1442–1446, 2012. View at Publisher · View at Google Scholar · View at Scopus
  40. D. E. Clark and S. D. Pickett, “Computational methods for the prediction of “drug-likeness”,” Drug Discovery Today, vol. 5, no. 2, pp. 49–58, 2000. View at Publisher · View at Google Scholar · View at Scopus