Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2014 (2014), Article ID 179486, 10 pages
http://dx.doi.org/10.1155/2014/179486
Review Article

Exosome in Tumour Microenvironment: Overview of the Crosstalk between Normal and Cancer Cells

1Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa, Campus de Caparica, 2829-516 Caparica, Portugal
2Centro de Química Estrutural, Complexo 1, Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais, 1049-001 Lisboa, Portugal
3CIGMH, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa, Campus de Caparica, 2829-516 Caparica, Portugal

Received 11 April 2014; Accepted 9 May 2014; Published 21 May 2014

Academic Editor: Lijun Jia

Copyright © 2014 Catarina Roma-Rodrigues et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. Hanahan and R. A. Weinberg, “Hallmarks of cancer: the next generation,” Cell, vol. 144, no. 5, pp. 646–674, 2011. View at Publisher · View at Google Scholar · View at Scopus
  2. T. Van Dyke and T. Jacks, “Cancer modeling in the modern era: progress and challenges,” Cell, vol. 108, no. 2, pp. 135–144, 2002. View at Publisher · View at Google Scholar · View at Scopus
  3. T. R. Geiger and D. S. Peeper, “Metastasis mechanisms,” Biochimica et Biophysica Acta - Reviews on Cancer, vol. 1796, no. 2, pp. 293–308, 2009. View at Publisher · View at Google Scholar · View at Scopus
  4. S. I. Grivennikov, F. R. Greten, and M. Karin, “Immunity, Inflammation, and Cancer,” Cell, vol. 140, no. 6, pp. 883–899, 2010. View at Publisher · View at Google Scholar · View at Scopus
  5. S. El Andaloussi, I. Mäger, X. O. Breakefield, and M. J. A. Wood, “Extracellular vesicles: biology and emerging therapeutic opportunities,” Nature Reviews Drug Discovery, vol. 12, no. 5, pp. 347–357, 2013. View at Publisher · View at Google Scholar · View at Scopus
  6. J. C. Akers, D. Gonda, R. Kim, B. S. Carter, and C. C. Chen, “Biogenesis of extracellular vesicles (EV): exosomes, microvesicles, retrovirus-like vesicles, and apoptotic bodies,” Journal of Neuro-Oncology, vol. 113, no. 1, pp. 1–11, 2013. View at Publisher · View at Google Scholar · View at Scopus
  7. B. N. Hannafon and W. Q. Ding, “Intercellular communication by exosome-derived microRNAs in cancer,” International Journal of Molecular Sciences, vol. 14, no. 7, pp. 14240–14269, 2013. View at Google Scholar
  8. H. G. Zhang and W. E. Grizzle, “Exosomes: a novel pathway of local and distant intercellular communication that facilitates the growth and metastasis of neoplastic lesions,” The American Journal of Pathology, vol. 184, no. 1, pp. 28–41, 2014. View at Google Scholar
  9. Y. Tian, S. Li, J. Song, T. Ji, M. Zhu et al., “A doxorubicin delivery platform using engineered natural membrane vesicle exosomes for targeted tumor therapy,” Biomaterials, vol. 35, no. 7, pp. 2383–2390, 2014. View at Google Scholar
  10. S. Keller, M. P. Sanderson, A. Stoeck, and P. Altevogt, “Exosomes: from biogenesis and secretion to biological function,” Immunology Letters, vol. 107, no. 2, pp. 102–108, 2006. View at Publisher · View at Google Scholar · View at Scopus
  11. M. Record, K. Carayon, M. Poirot, and S. Silvente-Poirot, “Exosomes as new vesicular lipid transporters involved in cell-cell communication and various pathophysiologies,” Biochimica Et Biophysica Acta, vol. 1841, no. 1, pp. 108–120, 2014. View at Google Scholar
  12. S. Pant, H. Hilton, and M. E. Burczynski, “The multifaceted exosome: biogenesis, role in normal and aberrant cellular function, and frontiers for pharmacological and biomarker opportunities,” Biochemical Pharmacology, vol. 83, no. 11, pp. 1484–1494, 2012. View at Publisher · View at Google Scholar · View at Scopus
  13. A. S. Azmi, B. Bao, and F. H. Sarkar, “Exosomes in cancer development, metastasis, and drug resistance: a comprehensive review,” Cancer Metastasis Reviews, vol. 32, no. 3-4, pp. 623–642, 2013. View at Google Scholar
  14. A. Beach, H. G. Zhang, M. Z. Ratajczak, and S. S. Kakar, “Exosomes: an overview of biogenesis, composition and role in ovarian cancer,” Journal of Ovarian Research, vol. 7, no. 1, p. 14, 2014. View at Google Scholar
  15. X. Yu, S. L. Harris, and A. J. Levine, “The regulation of exosome secretion: a novel function of the p53 protein,” Cancer Research, vol. 66, no. 9, pp. 4795–4801, 2006. View at Publisher · View at Google Scholar · View at Scopus
  16. S. EL Andaloussi, S. Lakhal, I. Mäger, and M. J. A. Wood, “Exosomes for targeted siRNA delivery across biological barriers,” Advanced Drug Delivery Reviews, vol. 65, no. 3, pp. 391–397, 2013. View at Publisher · View at Google Scholar · View at Scopus
  17. P. Kucharzewska and M. Belting, “Emerging roles of extracellular vesicles in the adaptive response of tumour cells to microenvironmental stress,” Journal of Extracellular Vesicles, vol. 2, 2013. View at Google Scholar
  18. A. Riches, E. Campbell, E. Borger, and S. Powis, “Regulation of exosome release from mammary epithelial and breast cancer cells—a new regulatory pathway,” European Journal of Cancer, vol. 50, no. 5, pp. 1025–1034, 2014. View at Google Scholar
  19. A. V. Vlassov, S. Magdaleno, R. Setterquist, and R. Conrad, “Exosomes: current knowledge of their composition, biological functions, and diagnostic and therapeutic potentials,” Biochimica et Biophysica Acta—General Subjects, vol. 1820, no. 7, pp. 940–948, 2012. View at Publisher · View at Google Scholar · View at Scopus
  20. F. Andre, N. E. C. Schartz, M. Movassagh et al., “Malignant effusions and immunogenic tumour-derived exosomes,” Lancet, vol. 360, no. 9329, pp. 295–305, 2002. View at Publisher · View at Google Scholar · View at Scopus
  21. H. G. Zhang, C. Liu, K. Su et al., “A membrane form of TNF-alpha presented by exosomes delays T cell activation-induced cell death,” Journal of Immunology, vol. 176, no. 12, pp. 7385–7393, 2006, Erratum in The Journal of Immunology, vol.177, no.3, p.2025, 2006. View at Google Scholar
  22. M. P. Sanderson, S. Keller, A. Alonso, S. Riedle, P. J. Dempsey, and P. Altevogt, “Generation of novel, secreted epidermal growth factor receptor (EGFR/ErbB1) isoforms via metalloprotease-dependent ectodomain shedding and exosome secretion,” Journal of Cellular Biochemistry, vol. 103, no. 6, pp. 1783–1797, 2008. View at Publisher · View at Google Scholar · View at Scopus
  23. C. Seelenmeyer, C. Stegmayer, and W. Nickel, “Unconventional secretion of fibroblast growth factor 2 and galectin-1 does not require shedding of plasma membrane-derived vesicles,” FEBS Letters, vol. 582, no. 9, pp. 1362–1368, 2008. View at Publisher · View at Google Scholar · View at Scopus
  24. C. Bang and T. Thum, “Exosomes: new players in cell-cell communication,” International Journal of Biochemistry and Cell Biology, vol. 44, no. 11, pp. 2060–2064, 2012. View at Publisher · View at Google Scholar · View at Scopus
  25. S. Mathivanan, H. Ji, and R. J. Simpson, “Exosomes: extracellular organelles important in intercellular communication,” Journal of Proteomics, vol. 73, no. 10, pp. 1907–1920, 2010. View at Publisher · View at Google Scholar · View at Scopus
  26. S. W. Harshman, A. Canella, P. D. Ciarlariello, A. Rocci, K. Agarwal et al., “Characterization of multiple myeloma vesicles by label-free relative quantitation,” Proteomics, vol. 13, no. 20, pp. 3013–3029, 2013. View at Google Scholar
  27. J. Hakulinen, L. Sankkila, N. Sugiyama, K. Lehti, and J. Keski-Oja, “Secretion of active membrane type 1 matrix metalloproteinase (MMP-14) into extracellular space in microvesicular exosomes,” Journal of Cellular Biochemistry, vol. 105, no. 5, pp. 1211–1218, 2008. View at Publisher · View at Google Scholar · View at Scopus
  28. J. McCready, J. D. Sims, D. Chan, and D. G. Jay, “Secretion of extracellular hsp90α via exosomes increases cancer cell motility: a role for plasminogen activation,” BMC Cancer, vol. 10, article 294, 2010. View at Publisher · View at Google Scholar · View at Scopus
  29. L. Zakharova, M. Svetlova, and A. F. Fomina, “T cell exosomes induce cholesterol accumulation in human monocytes via phosphatidylserine receptor,” Journal of Cellular Physiology, vol. 212, no. 1, pp. 174–181, 2007. View at Publisher · View at Google Scholar · View at Scopus
  30. X. Xiang, A. Poliakov, C. Liu et al., “Induction of myeloid-derived suppressor cells by tumor exosomes,” International Journal of Cancer, vol. 124, no. 11, pp. 2621–2633, 2009. View at Publisher · View at Google Scholar · View at Scopus
  31. W. Cao, Z. Ma, M. M. Rasenick, S. Yeh, and J. Yu, “N-3 Poly-Unsaturated Fatty Acids Shift Estrogen Signaling to Inhibit Human Breast Cancer Cell Growth,” PLoS ONE, vol. 7, no. 12, article e52838, 2012. View at Publisher · View at Google Scholar · View at Scopus
  32. A. Gajos-Michniewicz, M. Duechler, and M. Czyz, “MiRNA in melanoma-derived exosomes,” Cancer Letters, vol. 347, no. 1, pp. 29–37, 2014. View at Google Scholar
  33. H. Valadi, K. Ekström, A. Bossios, M. Sjöstrand, J. J. Lee, and J. O. Lötvall, “Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells,” Nature Cell Biology, vol. 9, no. 6, pp. 654–659, 2007. View at Publisher · View at Google Scholar · View at Scopus
  34. D. M. Pegtel, “Oncogenic herpesviruses sending mixed signals,” Proceedings of the National Academy of Sciences of the United States of America, vol. 110, no. 31, pp. 12503–12504, 2013. View at Google Scholar
  35. L. Camacho, P. Guerrero, and D. Marchetti, “MicroRNA and protein profiling of brain metastasis competent cell-derived exosomes,” PloS One, vol. 8, no. 9, article e73790, 2013. View at Google Scholar
  36. V. N. Aushev, I. B. Zborovskaya, K. K. Laktionov et al., “Comparisons of microRNA patterns in plasma before and after tumor removal reveal new biomarkers of lung squamous cell carcinoma,” PloS One, vol. 8, no. 10, article e78649, 2013. View at Google Scholar
  37. P. Jenjaroenpun, Y. Kremenska, V. M. Nair et al., “Characterization of RNA in exosomes secreted by human breast cancer cell lines using next-generation sequencing,” Peer Journal, vol. 1, article e201, 2013. View at Google Scholar
  38. R. Garzon, G. A. Calin, and C. M. Croce, “MicroRNAs in cancer,” Annual Review of Medicine, vol. 60, pp. 167–179, 2009. View at Publisher · View at Google Scholar · View at Scopus
  39. W. Filipowicz, S. N. Bhattacharyya, and N. Sonenberg, “MEchanisms of post-transcriptional regulation by microRNAs: are the answers in sight?” Nature Reviews Genetics, vol. 9, no. 2, pp. 102–114, 2008. View at Publisher · View at Google Scholar · View at Scopus
  40. L. Pigati, S. C. S. Yaddanapudi, R. Iyengar et al., “Selective release of MicroRNA species from normal and malignant mammary epithelial cells,” PLoS ONE, vol. 5, no. 10, article e13515, 2010. View at Publisher · View at Google Scholar · View at Scopus
  41. B. S. Batista, W. S. Eng, K. T. Pilobello, K. D. Hendricks-Muñoz, and L. K. Mahal, “Identification of a conserved glycan signature for microvesicles,” Journal of Proteome Research, vol. 10, no. 10, pp. 4624–4633, 2011. View at Publisher · View at Google Scholar · View at Scopus
  42. C. Escrevente, N. Grammel, S. Kandzia, J. Zeiser, E. M. Tranfield et al., “Sialoglycoproteins and N-glycans from secreted exosomes of ovarian carcinoma cells,” PloS One, vol. 8, no. 10, article e78631, 2013. View at Google Scholar
  43. A. Bobrie, M. Colombo, G. Raposo, and C. Théry, “Exosome secretion: molecular mechanisms and roles in immune responses,” Traffic, vol. 12, no. 12, pp. 1659–1668, 2011. View at Publisher · View at Google Scholar · View at Scopus
  44. A. Fleming, G. Sampey, M. C. Chung et al., “The carrying pigeons of the cell: exosomes and their role in infectious diseases caused by human pathogens,” Pathogens and Disease, 2014. View at Publisher · View at Google Scholar
  45. E. Hergenreider, S. Heydt, K. Tréguer et al., “Atheroprotective communication between endothelial cells and smooth muscle cells through miRNAs,” Nature Cell Biology, vol. 14, no. 3, pp. 249–256, 2012. View at Publisher · View at Google Scholar · View at Scopus
  46. H. Zhu, S. Guariglia, R. Y. Yu et al., “Mutation of SIMPLE in charcot-marie-tooth 1C alters production of exosomes,” Molecular Biology of the Cell, vol. 24, no. 11, pp. 1619–1637, 2013. View at Google Scholar
  47. C. A. Franzen, P. E. Simms, A. F. Van Huis, K. E. Foreman, P. C. Kuo, and G. N. Gupta, “Characterization of uptake and internalization of exosomes by bladder cancer cells,” BioMed Research International, vol. 2014, Article ID 619829, 11 pages, 2014. View at Publisher · View at Google Scholar
  48. D. D. Taylor and C. Gercel-Taylor, “The origin, function, and diagnostic potential of RNA within extracellular vesicles present in human biological fluids,” Frontiers in Genetics, vol. 4, p. 142, 2013. View at Google Scholar
  49. H. C. Christianson, K. J. Svensson, T. H. van Kuppevelt, J. P. Li, and M. Belting, “Cancer cell exosomes depend on cell-surface heparan sulfate proteoglycans for their internalization and functional activity,” Proceedings of the National Academy of Sciences of the United States of America, vol. 110, no. 43, pp. 17380–17385, 2013. View at Google Scholar
  50. V. Catalano, A. Turdo, S. Di Franco et al., “Tumor and its microenvironment: a synergistic interplay,” Seminars in Cancer Biology, vol. 23, no. 6, part B, pp. 522–532, 2013. View at Google Scholar
  51. R. M. Hoffman, “Stromal-cell and cancer-cell exosomes leading the metastatic exodus for the promised niche,” Breast Cancer Research, vol. 153, article 310, 2013. View at Google Scholar
  52. A. Marusyk, V. Almendro, and K. Polyak, “INtra-tumour heterogeneity: a looking glass for cancer?” Nature Reviews Cancer, vol. 12, no. 5, pp. 323–334, 2012. View at Publisher · View at Google Scholar · View at Scopus
  53. A. Suetsugu, K. Honma, S. Saji, H. Moriwaki, T. Ochiya, and R. M. Hoffman, “Imaging exosome transfer from breast cancer cells to stroma at metastatic sites in orthotopic nude-mouse models,” Advanced Drug Delivery Reviews, vol. 65, no. 3, pp. 383–390, 2013. View at Publisher · View at Google Scholar · View at Scopus
  54. H. F. Dvorak, “Tumors: wounds that do not heal: similarities between tumor stroma generation and wound healing,” The New England Journal of Medicine, vol. 315, no. 26, pp. 1650–1659, 1986. View at Google Scholar · View at Scopus
  55. C. V. Dang, “MYC on the path to cancer,” Cell, vol. 149, no. 1, pp. 22–35, 2012. View at Publisher · View at Google Scholar · View at Scopus
  56. A. Clayton, “Cancer cells use exosomes as tools to manipulate immunity and the microenvironment,” Oncoimmunology, vol. 1, no. 1, pp. 78–80, 2012. View at Google Scholar
  57. M. Fabbri, A. Paone, F. Calore et al., “MicroRNAs bind to Toll-like receptors to induce prometastatic inflammatory response,” Proceedings of the National Academy of Sciences of the United States of America, vol. 109, no. 31, pp. E2110–E2116, 2012. View at Publisher · View at Google Scholar · View at Scopus
  58. M. Otranto, V. Sarrazy, F. Bonté, B. Hinz, G. Gabbiani, and A. Desmoulière, “The role of the myofibroblast in tumor stroma remodeling,” Cell Adhesion and Migration, vol. 6, no. 3, pp. 203–219, 2012. View at Publisher · View at Google Scholar · View at Scopus
  59. J. Webber, R. Steadman, M. D. Mason, Z. Tabi, and A. Clayton, “Cancer exosomes trigger fibroblast to myofibroblast differentiation,” Cancer Research, vol. 70, no. 23, pp. 9621–9630, 2010. View at Publisher · View at Google Scholar · View at Scopus
  60. J. A. Cho, H. Park, E. H. Lim et al., “Exosomes from ovarian cancer cells induce adipose tissue-derived mesenchymal stem cells to acquire the physical and functional characteristics of tumor-supporting myofibroblasts,” Gynecologic Oncology, vol. 123, no. 2, pp. 379–386, 2011. View at Publisher · View at Google Scholar · View at Scopus
  61. J. A. Cho, H. Park, E. H. Lim, and K. W. Lee, “Exosomes from breast cancer cells can convert adipose tissue-derived mesenchymal stem cells into myofibroblast-like cells,” International Journal of Oncology, vol. 40, no. 1, pp. 130–138, 2012. View at Publisher · View at Google Scholar · View at Scopus
  62. F. Thuma and M. Zoller, “Outsmart tumor exosomes to steal the cancer initiating cell its niche,” Seminars in Cancer Biology, 2014. View at Publisher · View at Google Scholar
  63. V. Luga and J. L. Wrana, “Tumor-stroma interaction: revealing fibroblast-secreted exosomes as potent regulators of Wnt-planar cell polarity signaling in cancer metastasis,” Cancer Research, vol. 73, no. 23, pp. 6843–6847, 2013. View at Google Scholar
  64. S. S. Sidhu, A. T. Mengistab, A. N. Tauscher, J. LaVail, and C. Basbaum, “The microvesicle as a vehicle for EMMPRin in tumor-stromal interactions,” Oncogene, vol. 23, no. 4, pp. 956–963, 2004. View at Publisher · View at Google Scholar · View at Scopus
  65. A. Ramteke, H. Ting, C. Agarwal et al., “Exosomes secreted under hypoxia enhance invasiveness and stemness of prostate cancer cells by targeting adherens junction molecules,” Molecular Carcinogenesis, 2013. View at Publisher · View at Google Scholar
  66. M. Katoh, “Therapeutics targeting angiogenesis: genetics and epigenetics, extracellular miRNAs and signaling networks (Review),” International Journal of Molecular Medicine, vol. 32, no. 4, pp. 763–767, 2013. View at Google Scholar
  67. P. Kucharzewska, H. C. Christianson, J. E. Welch et al., “Exosomes reflect the hypoxic status of glioma cells and mediate hypoxia-dependent activation of vascular cells during tumor development,” Proceedings of the National Academy of Sciences of the United States of America, vol. 110, no. 18, pp. 7312–7317, 2013. View at Publisher · View at Google Scholar · View at Scopus
  68. D. K. Jeppesen, A. Nawrocki, S. G. Jensen et al., “Quantitative proteomics of fractionated membrane and lumen exosome proteins from isogenic metastatic and nonmetastatic bladder cancer cells reveal differential expression of EMT factors,” Proteomics, vol. 14, no. 6, pp. 699–712, 2014. View at Google Scholar
  69. J. L. Hood, S. San Roman, and S. A. Wickline, “Exosomes released by melanoma cells prepare sentinel lymph nodes for tumor metastasis,” Cancer Research, vol. 71, no. 11, pp. 3792–3801, 2011. View at Publisher · View at Google Scholar · View at Scopus
  70. H. Peinado, M. Alečković, S. Lavotshkin et al., “Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET,” Nature Medicine, vol. 18, no. 6, pp. 883–891, 2012. View at Publisher · View at Google Scholar · View at Scopus
  71. D. D. Taylor and C. Gercel-Taylor, “MicroRNA signatures of tumor-derived exosomes as diagnostic biomarkers of ovarian cancer,” Gynecologic Oncology, vol. 110, no. 1, pp. 13–21, 2008. View at Publisher · View at Google Scholar · View at Scopus
  72. S. Dijkstra, I. L. Birker, F. P. Smit et al., “Prostate cancer biomarker profiles in urinary sediments and exosomes,” The Journal of Urology, vol. 191, no. 4, pp. 1132–1138, 2014. View at Google Scholar
  73. Y. Li and E. Mustapha Bahassi, “Biofluid-based circulating tumor molecules as diagnostic tools for use in personalized medicine,” Journal of Molecular Biomarkers & Diagnosis, vol. 5, pp. 157–163, 2013. View at Google Scholar
  74. K. Shedden, X. T. Xie, P. Chandaroy, Y. T. Chang, and G. R. Rosania, “Expulsion of small molecules in vesicles shed by cancer cells: association with gene expression and chemosensitivity profiles,” Cancer Research, vol. 63, no. 15, pp. 4331–4337, 2003. View at Google Scholar · View at Scopus
  75. R. Safaei, B. J. Larson, T. C. Cheng et al., “Abnormal lysosomal trafficking and enhanced exosomal export of cisplatin in drug-resistant human ovarian carcinoma cells,” Molecular Cancer Therapeutics, vol. 4, no. 10, pp. 1595–1604, 2005. View at Publisher · View at Google Scholar · View at Scopus
  76. R. Khan, S. Zahid, Y. J. Wan et al., “Protein expression profiling of nuclear membrane protein reveals potential biomarker of human hepatocellular carcinoma,” Clinical Proteomics, vol. 10, no. 1, p. 6, 2013. View at Google Scholar
  77. T. Aung, B. Chapuy, D. Vogel et al., “Exosomal evasion of humoral immunotherapy in aggressive B-cell lymphoma modulated by ATP-binding cassette transporter A3,” Proceedings of the National Academy of Sciences of the United States of America, vol. 108, no. 37, pp. 15336–15341, 2011. View at Publisher · View at Google Scholar · View at Scopus
  78. V. Ciravolo, V. Huber, G. C. Ghedini et al., “Potential role of HER2-overexpressing exosomes in countering trastuzumab-based therapy,” Journal of Cellular Physiology, vol. 227, no. 2, pp. 658–667, 2012. View at Publisher · View at Google Scholar · View at Scopus
  79. H.-G. Zhang and W. E. Grizzle, “Exosomes and cancer: a newly described pathway of immune suppression,” Clinical Cancer Research, vol. 17, no. 5, pp. 959–964, 2011. View at Publisher · View at Google Scholar · View at Scopus
  80. G. Raposo, H. W. Nijman, W. Stoorvogel et al., “B lymphocytes secrete antigen-presenting vesicles,” The Journal of Experimental Medicine, vol. 183, no. 3, pp. 1161–1172, 1996. View at Google Scholar
  81. L. Zitvogel, A. Regnault, A. Lozier et al., “Eradication of established murine tumors using a novel cell-free vaccine: dendritic cell-derived exosomes,” Nature Medicine, vol. 4, no. 5, pp. 594–600, 1998. View at Publisher · View at Google Scholar · View at Scopus
  82. B. Escudier, T. Dorval, N. Chaput et al., “Vaccination of metastatic melanoma patients with autologous dendritic cell (DC) derived-exosomes: results of the first phase 1 clinical trial,” Journal of Translational Medicine, vol. 3, article 10, 2005. View at Publisher · View at Google Scholar · View at Scopus
  83. M. A. Morse, J. Garst, T. Osada et al., “A phase I study of dexosome immunotherapy in patients with advanced non-small cell lung cancer,” Journal of Translational Medicine, vol. 3, no. 1, article 9, 2005. View at Publisher · View at Google Scholar · View at Scopus
  84. S. Dai, D. Wei, Z. Wu et al., “Phase I clinical trial of autologous ascites-derived exosomes combined with GM-CSF for colorectal cancer,” Molecular Therapy, vol. 16, no. 4, pp. 782–790, 2008. View at Publisher · View at Google Scholar · View at Scopus
  85. S. Viaud, M. Terme, C. Flament et al., “Dendritic cell-derived exosomes promote natural killer cell activation and proliferation: a role for NKG2D ligands and IL-15Rα,” PLoS ONE, vol. 4, no. 3, article e4942, 2009. View at Publisher · View at Google Scholar · View at Scopus
  86. S. A. A. Kooijmans, P. Vader, S. M. van Dommelen, W. W. van Solinge, and R. M. Schiffelers, “Exosome mimetics: a novel class of drug delivery systems,” International Journal of Nanomedicine, vol. 7, pp. 1525–1541, 2012. View at Publisher · View at Google Scholar · View at Scopus
  87. L. Alvarez-Erviti, Y. Seow, H. Yin, C. Betts, S. Lakhal, and M. J. A. Wood, “Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes,” Nature Biotechnology, vol. 29, no. 4, pp. 341–345, 2011. View at Publisher · View at Google Scholar · View at Scopus
  88. S.-I. Ohno, A. Ishikawa, and M. Kuroda, “Roles of exosomes and microvesicles in disease pathogenesis,” Advanced Drug Delivery Reviews, vol. 65, no. 3, pp. 398–401, 2013. View at Publisher · View at Google Scholar · View at Scopus