Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2014, Article ID 180109, 5 pages
http://dx.doi.org/10.1155/2014/180109
Review Article

Defensins and Sepsis

Department of Anesthesiology, the First Affiliated Hospital, Zhejiang University School of Medicine, Qingchun Road 79, Hangzhou 31003, China

Received 1 March 2014; Revised 8 May 2014; Accepted 16 June 2014; Published 19 August 2014

Academic Editor: Qiang Shu

Copyright © 2014 Guo-Hao Xie et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. S. Hotchkiss and I. E. Karl, “The pathophysiology and treatment of sepsis,” The New England Journal of Medicine, vol. 348, no. 2, pp. 138–150, 2003. View at Publisher · View at Google Scholar · View at Scopus
  2. J. A. Russell, “Management of sepsis,” The New England Journal of Medicine, vol. 355, no. 16, pp. 1699–1713, 2006. View at Publisher · View at Google Scholar · View at Scopus
  3. J. Cohen, “The immunopathogenesis of sepsis,” Nature, vol. 420, no. 6917, pp. 885–891, 2002. View at Publisher · View at Google Scholar · View at Scopus
  4. G. S. Martin, D. M. Mannino, S. Eaton, and M. Moss, “The epidemiology of sepsis in the United States from 1979 through 2000,” New England Journal of Medicine, vol. 348, no. 16, pp. 1546–1554, 2003. View at Publisher · View at Google Scholar · View at Scopus
  5. B. Cheng, G. Xie, S. Yao et al., “Epidemiology of severe sepsis in critically ill surgical patients in ten university hospitals in China,” Critical Care Medicine, vol. 35, no. 11, pp. 2538–2546, 2007. View at Publisher · View at Google Scholar · View at Scopus
  6. D. C. Angus, W. T. Linde-Zwirble, J. Lidicker, G. Clermont, J. Carcillo, and M. R. Pinsky, “Epidemiology of severe sepsis in the United States: analysis of incidence, outcome, and associated costs of care,” Critical Care Medicine, vol. 29, no. 7, pp. 1303–1310, 2001. View at Publisher · View at Google Scholar · View at Scopus
  7. F. B. Mayr, S. Yende, and D. C. Angus, “Epidemiology of severe sepsis,” Virulence, vol. 5, no. 1, pp. 4–11, 2014. View at Google Scholar
  8. R. P. Wenzel, “Treating sepsis,” The New England Journal of Medicine, vol. 347, no. 13, pp. 966–967, 2002. View at Publisher · View at Google Scholar · View at Scopus
  9. R. S. Hotchkiss, G. Monneret, and D. Payen, “Immunosuppression in sepsis: a novel understanding of the disorder and a new therapeutic approach,” The Lancet Infectious Diseases, vol. 13, no. 3, pp. 260–268, 2013. View at Publisher · View at Google Scholar · View at Scopus
  10. Y. Yamaguchi and Y. Ouchi, “Antimicrobial peptide defensin identification of novel isoforms and the characterization of their physiological roles and their significance in the pathogenesis of diseases,” Proceedings of the Japan Academy B, Physical and Biological Sciences, vol. 88, no. 4, pp. 152–166, 2012. View at Google Scholar
  11. G. Wang, “Human antimicrobial peptides and proteins,” Pharmaceuticals, vol. 7, no. 5, pp. 545–594, 2014. View at Google Scholar
  12. M. E. Selsted and A. J. Ouellette, “Mammalian defensins in the antimicrobial immune response,” Nature Immunology, vol. 6, no. 6, pp. 551–557, 2005. View at Publisher · View at Google Scholar · View at Scopus
  13. J. J. Schneider, A. Unholzer, M. Schaller et al., “Human defensins,” Journal of Molecular Medicine, vol. 83, no. 8, pp. 587–595, 2005. View at Google Scholar
  14. Y. Tang, J. Yuan, G. Ösapay et al., “A cyclic antimicrobial peptide produced in primate leukocytes by the ligation of two truncated α-defensins,” Science, vol. 286, no. 5439, pp. 498–502, 1999. View at Publisher · View at Google Scholar · View at Scopus
  15. P. Tongaonkar, P. Tran, K. Roberts et al., “Rhesus macaque θ-defensin isoforms: expression, antimicrobial activities, and demonstration of a prominent role in neutrophil granule microbicidal activities,” Journal of Leukocyte Biology, vol. 89, no. 2, pp. 283–290, 2011. View at Publisher · View at Google Scholar · View at Scopus
  16. C. L. Wohlford-Lenane, D. K. Meyerholz, S. Perlman et al., “Rhesus theta-defensin prevents death in a mouse model of severe acute respiratory syndrome coronavirus pulmonary disease,” Journal of Virology, vol. 83, no. 21, pp. 11385–11390, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. K. M. Varney, A. M. Bonvin, and M. Pazgier, “Turning defensin mimetics novel antibiotics targeting lipid II,” PLOS Pathogens, vol. 9, no. 11, Article ID e1003732, 2013. View at Google Scholar
  18. T. Ganz, “Defensins: antimicrobial peptides of innate immunity,” Nature Reviews Immunology, vol. 3, no. 9, pp. 710–720, 2003. View at Publisher · View at Google Scholar · View at Scopus
  19. J. Harder, J. Bartels, E. Christophers, and J. Schröder, “Isolation and characterization of human β-defensin-3, a novel human inducible peptide antibiotic,” Journal of Biological Chemistry, vol. 276, no. 8, pp. 5707–5713, 2001. View at Publisher · View at Google Scholar · View at Scopus
  20. B. O. Schroeder, Z. Wu, S. Nuding et al., “Reduction of disulphide bonds unmasks potent antimicrobial activity of human β 2-defensin 1,” Nature, vol. 469, no. 7330, pp. 419–423, 2011. View at Publisher · View at Google Scholar · View at Scopus
  21. S. U. Jaeger, B. O. Schroeder, U. Meyer-Hoffert et al., “Cell-mediated reduction of human β-defensin 1: major role for mucosal thioredoxin,” Mucosal Immunology, vol. 6, no. 6, pp. 1179–1190, 2013. View at Google Scholar
  22. Y. Lai and R. L. Gallo, “AMPed up immunity: how antimicrobial peptides have multiple roles in immune defense,” Trends in Immunology, vol. 30, no. 3, pp. 131–141, 2009. View at Publisher · View at Google Scholar · View at Scopus
  23. D. Yang, A. Biragyn, D. M. Hoover, J. Lubkowski, and J. J. Oppenheim, “Multiple roles of antimicrobial defensins, cathelicidins, and eosinophil-derived neurotoxin in host defense,” Annual Review of Immunology, vol. 22, pp. 181–215, 2004. View at Publisher · View at Google Scholar · View at Scopus
  24. S. Schaller-Bals, A. Schulze, and R. Bals, “Increased levels of antimicrobial peptides in tracheal aspirates of newborn infants during infection,” The American Journal of Respiratory and Critical Care Medicine, vol. 165, no. 7, pp. 992–995, 2002. View at Publisher · View at Google Scholar · View at Scopus
  25. H. Mukae, H. Ishimoto, S. Yanagi et al., “Elevated BALF concentrations of α- and β-defensins in patients with pulmonary alveolar proteinosis,” Respiratory Medicine, vol. 101, no. 4, pp. 715–721, 2007. View at Publisher · View at Google Scholar · View at Scopus
  26. T. D. Starner, B. Agerberth, G. H. Gudmundsson, and P. B. McCray Jr., “Expression and activity of β-defensins and LL-37 in the developing human lung,” Journal of Immunology, vol. 174, no. 3, pp. 1608–1615, 2005. View at Publisher · View at Google Scholar · View at Scopus
  27. M. Book, Q. Chen, L. E. Lehmann et al., “Inducibility of the endogenous antibiotic peptide β-defensin 2 is impaired in patients with severe sepsis,” Critical Care, vol. 11, article R19, 2007. View at Publisher · View at Google Scholar · View at Scopus
  28. S. M. Milner and M. R. Ortega, “Reduced antimicrobial peptide expression in human burn wounds,” Burns, vol. 25, no. 5, pp. 411–413, 1999. View at Publisher · View at Google Scholar · View at Scopus
  29. K. Fellermann, D. E. Stange, E. Schaeffeler et al., “A chromosome 8 gene-cluster polymorphism with low human geta-defensin 2 gene copy number predisposes to Crohn disease of the colon,” The American Journal of Human Genetics, vol. 79, no. 3, pp. 439–448, 2006. View at Google Scholar
  30. A. Fahlgren, S. Hammarström, Å. Danielsson, and M.-L. Hammarström, “β-defensin-3 and -4 in intestinal epithelial cells display increased mRNA expression in ulcerative colitis,” Clinical and Experimental Immunology, vol. 137, no. 2, pp. 379–385, 2004. View at Publisher · View at Google Scholar · View at Scopus
  31. Q. Shu, Z. Shi, Z. Zhao et al., “Protection against Pseudomonas aeruginosa pneumonia and sepsis-induced lung injury by overexpression of β-defensin-2 in rats,” Shock, vol. 26, no. 4, pp. 365–371, 2006. View at Publisher · View at Google Scholar · View at Scopus
  32. H. H. Wang, Q. Shu, and Z. Shi, “The protective effect of beta-defensin 2 in acute lung injury induced by respiratory Pseudomonas aeruginosa infection in rats,” Chinese Journal of Anesthesiology, vol. 25, pp. 762–764, 2005. View at Google Scholar
  33. J. M. Bao, H. P. Yao, Z. Chen et al., “The effect of pretreatment of recombinant beta-defensin 2 on the ICAM-1 expression in lung of rats with acute lung injury,” Chinese Journal of Anesthesiology, vol. 25, pp. 702–703, 2005. View at Google Scholar
  34. P. Olbrich, A. Pavón, M. L. Rosso et al., “Association of human beta-defensin-2 serum levels and sepsis in preterm neonates,” Pediatric Critical Care Medicine, vol. 14, no. 8, pp. 796–800, 2013. View at Google Scholar
  35. J. B. Schaal, D. Tran, P. Tran et al., “Rhesus macaque theta defensins suppress inflammatory cytokines and enhance survival in mouse models of bacteremic sepsis,” PLoS ONE, vol. 7, no. 12, Article ID e51337, 2012. View at Publisher · View at Google Scholar · View at Scopus
  36. Q. Chen, Y. Jin, K. Zhang et al., “Alarmin HNP-1 promotes pyroptosis and IL-1β release through different roles of NLRP3 inflammasome via P2X7 in LPS-primed macrophages,” Innate Immunity, vol. 20, no. 3, pp. 290–300, 2014. View at Google Scholar
  37. K. Bdeir, A. A. Higazi, I. Kulikovskaya et al., “Neutrophil alpha-defensins cause lung injury by disrupting the capillary-epithelial barrier,” American Journal of Respiratory and Critical Care Medicine, vol. 181, no. 9, pp. 935–946, 2010. View at Google Scholar
  38. I. Matsushita, K. Hasegawa, K. Nakata, K. Yasuda, K. Tokunaga, and N. Keicho, “Genetic variants of human β-defensin-1 and chronic obstructive pulmonary disease,” Biochemical and Biophysical Research Communications, vol. 291, no. 1, pp. 17–22, 2002. View at Publisher · View at Google Scholar · View at Scopus
  39. H. Levy, B. A. Raby, S. Lake et al., “Association of defensin beta-1 gene polymorphism with asthma,” Journal of Allergy and Clinical Immunology, vol. 115, no. 2, pp. 252–258, 2005. View at Google Scholar
  40. L. Braida, M. Boniotto, A. Pontillo, P. A. Tovo, A. Amoroso, and S. Crovella, “A single-nucleotide polymorphism in the human beta-defensin 1 gene as associated with HIV-1 infection in Italian children,” AIDS, vol. 18, no. 11, pp. 1598–1600, 2004. View at Publisher · View at Google Scholar · View at Scopus
  41. R. J. Jurevic, M. Bai, R. B. Chadwick, T. C. White, and B. A. Dale, “Single-nucleotide polymorphisms (SNPs) in human β-defensin 1: high-throughput SNP assays and association with Candida carriage in type I diabetics and nondiabetic controls,” Journal of Clinical Microbiology, vol. 41, no. 1, pp. 90–96, 2003. View at Publisher · View at Google Scholar · View at Scopus
  42. A. M. Wallace, J. He, K. M. Burkett et al., “Contribution of alpha- and beta-defensins to lung function decline and infection in smokers: an association study,” Respiratory Research, vol. 7, article 76, 2006. View at Publisher · View at Google Scholar · View at Scopus
  43. M. T. Lin and T. E. Albertson, “Genomic polymorphisms in sepsis,” Critical Care Medicine, vol. 32, no. 2, pp. 569–579, 2004. View at Publisher · View at Google Scholar · View at Scopus
  44. Q. X. Chen, C. Lv, L. X. Huang et al., “Genomic variations within DEFB1 are associated with the susceptibility to and the fatal outcome of severe sepsis in Chinese Han population,” Genes and Immunity, vol. 8, no. 5, pp. 439–443, 2007. View at Publisher · View at Google Scholar · View at Scopus
  45. A. G. Nackley, S. A. Shabalina, I. E. Tchivileva et al., “Human catechol-O-methyltransferase haplotypes modulate protein expression by altering mRNA secondary structure,” Science, vol. 314, no. 5807, pp. 1930–1933, 2006. View at Publisher · View at Google Scholar · View at Scopus
  46. E. J. Hollox, J. A. L. Armour, and J. C. K. Barber, “Extensive normal copy number variation of a β-defensin antimicrobial-gene cluster,” The American Journal of Human Genetics, vol. 73, no. 3, pp. 591–600, 2003. View at Publisher · View at Google Scholar · View at Scopus
  47. P. M. R. Aldred, E. J. Hollox, and J. A. L. Armour, “Copy number polymorphism and expression level variation of the human α-defensin genes DEFA1 and DEFA3,” Human Molecular Genetics, vol. 14, no. 14, pp. 2045–2052, 2005. View at Publisher · View at Google Scholar · View at Scopus
  48. Q. Chen, M. Book, X. Fang, A. Hoeft, and F. Stuber, “Screening of copy number polymorphisms in human β-defensin genes using modified real-time quantitative PCR,” Journal of Immunological Methods, vol. 308, no. 1-2, pp. 231–240, 2006. View at Publisher · View at Google Scholar · View at Scopus
  49. Q. Chen, M. Hakimi, S. Wu et al., “Increased genomic copy number of DEFA1/DEFA3 is associated with susceptibility to severe sepsis in Chinese han population,” Anesthesiology, vol. 112, no. 6, pp. 1428–1434, 2010. View at Publisher · View at Google Scholar · View at Scopus
  50. K. Taylor, D. J. Clarke, B. McCullough et al., “Analysis and separation of residues important for the chemoattractant and antimicrobial activities of beta-defensin 3,” The Journal of Biological Chemistry, vol. 283, no. 11, pp. 6631–6639, 2008. View at Google Scholar