Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2014, Article ID 182353, 9 pages
http://dx.doi.org/10.1155/2014/182353
Research Article

Pegylated Gold Nanoparticles Induce Apoptosis in Human Chronic Myeloid Leukemia Cells

1Department of Medical Research, China Medical University Hospital, Taichung 404, Taiwan
2School of Chinese Medicine, China Medical University, Taichung 404, Taiwan
3Department of Gynecology and Obstetrics, Mackay Memorial Hospital, Taipei 104, Taiwan
4Department of Medical Research, Mackay Memorial Hospital, Taipei 104, Taiwan
5Department of Pathology, Mackay Memorial Hospital, Taipei 104, Taiwan
6Institute of Physics, Academia Sinica, 128 Academia Road, Section 2, Taipei 115, Taiwan
7Department of Radiation Oncology, Mackay Memorial Hospital, 92 Chung San North Road, Section 2, Taipei 104, Taiwan
8Institute of Traditional Medicine, National Yang-Ming University, Taipei 112, Taiwan

Received 29 November 2013; Revised 4 February 2014; Accepted 15 February 2014; Published 25 March 2014

Academic Editor: Fabio Sonvico

Copyright © 2014 Yu-Chuen Huang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. R. Grobmyer, N. Iwakuma, P. Sharma, and B. M. Moudgil, “What is cancer nanotechnology?” Methods in Molecular Biology, vol. 624, pp. 1–9, 2010. View at Publisher · View at Google Scholar · View at Scopus
  2. F. Frederix, J.-M. Friedt, K.-H. Choi et al., “Biosensing based on light absorption of nanoscaled gold and silver particles,” Analytical Chemistry, vol. 75, no. 24, pp. 6894–6900, 2003. View at Publisher · View at Google Scholar · View at Scopus
  3. J. F. Hainfeld, D. N. Slatkin, and H. M. Smilowitz, “The use of gold nanoparticles to enhance radiotherapy in mice,” Physics in Medicine and Biology, vol. 49, no. 18, pp. N309–N315, 2004. View at Publisher · View at Google Scholar · View at Scopus
  4. G. F. Paciotti, L. Myer, D. Weinreich et al., “Colloidal gold: a novel nanoparticle vector for tumor directed drug delivery,” Drug Delivery, vol. 11, no. 3, pp. 169–183, 2004. View at Publisher · View at Google Scholar · View at Scopus
  5. P. Podsiadlo, V. A. Sinani, J. H. Bahng, N. W. S. Kam, J. Lee, and N. A. Kotov, “Gold nanoparticles enhance the anti-leukemia action of a 6-mercaptopurine chemotherapeutic agent,” Langmuir, vol. 24, no. 2, pp. 568–574, 2008. View at Publisher · View at Google Scholar · View at Scopus
  6. T. Niidome, M. Yamagata, Y. Okamoto et al., “PEG-modified gold nanorods with a stealth character for in vivo applications,” Journal of Controlled Release, vol. 114, no. 3, pp. 343–347, 2006. View at Publisher · View at Google Scholar · View at Scopus
  7. J. C. Y. Kah, K. Y. Wong, K. G. Neoh et al., “Critical parameters in the pegylation of gold nanoshells for biomedical applications: an in vitro macrophage study,” Journal of Drug Targeting, vol. 17, no. 3, pp. 181–193, 2009. View at Publisher · View at Google Scholar · View at Scopus
  8. P. Bailon and C.-Y. Won, “PEG-modified biopharmaceuticals,” Expert Opinion on Drug Delivery, vol. 6, no. 1, pp. 1–16, 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. C.-J. Liu, C.-H. Wang, S.-T. Chen et al., “Enhancement of cell radiation sensitivity by pegylated gold nanoparticles,” Physics in Medicine and Biology, vol. 55, no. 4, pp. 931–945, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. H.-H. Chen, C.-C. Chien, C. Petibois et al., “Quantitative analysis of nanoparticle internalization in mammalian cells by high resolution X-ray microscopy,” Journal of Nanobiotechnology, vol. 9, article 14, 2011. View at Publisher · View at Google Scholar · View at Scopus
  11. C. Fruijtier-Pölloth, “Safety assessment on polyethylene glycols (PEGs) and their derivatives as used in cosmetic products,” Toxicology, vol. 214, no. 1-2, pp. 1–38, 2005. View at Publisher · View at Google Scholar · View at Scopus
  12. C.-J. Liu, C.-H. Wang, C.-C. Chien et al., “Enhanced X-ray irradiation-induced cancer cell damage by gold nanoparticles treated by a new synthesis method of polyethylene glycol modification,” Nanotechnology, vol. 19, no. 29, Article ID 295104, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. C.-J. Liu, T.-Y. Yang, C.-H. Wang et al., “Enhanced photocatalysis, colloidal stability and cytotoxicity of synchrotron X-ray synthesized Au/TiO2 nanoparticles,” Materials Chemistry and Physics, vol. 117, no. 1, pp. 74–79, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. C.-H. Wang, C.-J. Liu, C.-L. Wang et al., “Optimizing the size and surface properties of polyethylene glycol (PEG)-gold nanoparticles by intense X-ray irradiation,” Journal of Physics D: Applied Physics, vol. 41, no. 19, Article ID 195301, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. C.-H. Wang, C.-J. Liu, C.-C. Chien et al., “X-ray synthesized PEGylated (polyethylene glycol coated) gold nanoparticles in mice strongly accumulate in tumors,” Materials Chemistry and Physics, vol. 126, no. 1-2, pp. 352–356, 2011. View at Publisher · View at Google Scholar · View at Scopus
  16. W. L. Liao and F. J. Tsai, “Personalized medicine: a paradigm shift in healthcare,” BioMedicine, vol. 3, no. 2, pp. 66–72, 2013. View at Google Scholar
  17. Y.-C. Yang, C.-H. Wang, Y.-K. Hwu, and J.-H. Je, “Synchrotron X-ray synthesis of colloidal gold particles for drug delivery,” Materials Chemistry and Physics, vol. 100, no. 1, pp. 72–76, 2006. View at Publisher · View at Google Scholar · View at Scopus
  18. C.-H. Wang, T.-E. Hua, C.-C. Chien et al., “Aqueous gold nanosols stabilized by electrostatic protection generated by X-ray irradiation assisted radical reduction,” Materials Chemistry and Physics, vol. 106, no. 2-3, pp. 323–329, 2007. View at Publisher · View at Google Scholar · View at Scopus
  19. C. Y. Liu, T. H. Tsai, Y. C. Huang, H. R. Shieh, H. F. Liao, and Y. J. Chen, “Differential immunomodulating effects of pegylated liposomal doxorubicin nanoparticles on human macrophages,” Journal of Nanoscience and Nanotechnology, vol. 12, no. 10, pp. 7739–7746, 2012. View at Publisher · View at Google Scholar
  20. Z. Krpetic, F. Porta, and G. Scaǹ, “Selective entrance of gold nanoparticles into cancer cells,” Gold Bulletin, vol. 39, no. 2, pp. 66–68, 2006. View at Publisher · View at Google Scholar · View at Scopus
  21. C.-A. J. Lin, C.-H. Lee, J.-T. Hsieh et al., “Synthesis of fluorescent metallic nanoclusters toward biomedical application: recent progress and present challenges,” Journal of Medical and Biological Engineering, vol. 29, no. 6, pp. 276–283, 2009. View at Google Scholar · View at Scopus
  22. C.-A. J. Lin, T.-Y. Yang, C.-H. Lee et al., “Synthesis, characterization, and bioconjugation of fluorescent gold nanoclusters toward biological labeling applications,” ACS Nano, vol. 3, no. 2, pp. 395–401, 2009. View at Publisher · View at Google Scholar · View at Scopus
  23. N. Lewinski, V. Colvin, and R. Drezek, “Cytotoxicity of nanopartides,” Small, vol. 4, no. 1, pp. 26–49, 2008. View at Publisher · View at Google Scholar · View at Scopus
  24. C. J. Murphy, A. M. Gole, J. W. Stone et al., “Gold nanoparticles in biology: beyond toxicity to cellular imaging,” Accounts of Chemical Research, vol. 41, no. 12, pp. 1721–1730, 2008. View at Publisher · View at Google Scholar · View at Scopus
  25. E. Boisselier and D. Astruc, “Gold nanoparticles in nanomedicine: preparations, imaging, diagnostics, therapies and toxicity,” Chemical Society Reviews, vol. 38, no. 6, pp. 1759–1782, 2009. View at Publisher · View at Google Scholar · View at Scopus
  26. Y.-Y. Tsai, Y.-H. Huang, Y.-L. Chao et al., “Identification of the nanogold particle-induced endoplasmic reticulum stress by omic techniques and systems biology analysis,” ACS Nano, vol. 5, no. 12, pp. 9354–9369, 2011. View at Publisher · View at Google Scholar · View at Scopus
  27. E. E. Connor, J. Mwamuka, A. Gole, C. J. Murphy, and M. D. Wyatt, “Gold nanoparticles are taken up by human cells but do not cause acute cytotoxicity,” Small, vol. 1, no. 3, pp. 325–327, 2005. View at Publisher · View at Google Scholar · View at Scopus
  28. R. G. Rayavarapu, W. Petersen, L. Hartsuiker et al., “In vitro toxicity studies of polymer-coated gold nanorods,” Nanotechnology, vol. 21, no. 14, Article ID 145101, 2010. View at Publisher · View at Google Scholar · View at Scopus