Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2014, Article ID 185946, 7 pages
http://dx.doi.org/10.1155/2014/185946
Research Article

Evaluation of the Antioxidant Activity and Antiproliferative Effect of the Jaboticaba (Myrciaria cauliflora) Seed Extracts in Oral Carcinoma Cells

1Department of Otolaryngology, Cathay General Hospital, Taipei City 106, Taiwan
2Department of Otolaryngology, Sijhih Cathay General Hospital, New Taipei City 221, Taiwan
3School of Medicine, Fu-Jen Catholic University, New Taipei City 242, Taiwan
4Department of Medical Imaging and Radiological Sciences, Kaohsiung Medical University, Kaohsiung 807, Taiwan
5National Sun Yat-Sen University-Kaohsiung Medical University Joint Research Center, Kaohsiung 804, Taiwan
6Translational Research Center, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
7Institute of Medical Science and Technology, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
8Institute of Cosmetic Science, Chia-Nan University of Pharmacy and Science, Tainan 717, Taiwan
9Instrument Technology Research Center, National Applied Research Laboratories, Hsinchu 300, Taiwan
10Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
11Department of Obstetrics and Gynecology, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
12School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
13Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung 807, Taiwan
14Department of Laboratory Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan

Received 29 March 2014; Revised 6 July 2014; Accepted 22 July 2014; Published 18 August 2014

Academic Editor: Blanca Hernández-Ledesma

Copyright © 2014 Wen-Hung Wang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. B. N. Ames, “Micronutrients prevent cancer and delay aging,” Toxicology Letters, vol. 102-103, pp. 5–18, 1998. View at Publisher · View at Google Scholar · View at Scopus
  2. K. A. Reynertson, H. Yang, B. Jiang, M. J. Basile, and E. J. Kennelly, “Quantitative analysis of antiradical phenolic constituents from fourteen edible Myrtaceae fruits,” Food Chemistry, vol. 109, no. 4, pp. 883–890, 2008. View at Publisher · View at Google Scholar · View at Scopus
  3. E. Lin, H. Chou, P. Kuo, and Y. Huang, “Antioxidant and antiproliferative activities of methanolic extracts of Perilla frutescens,” Journal of Medicinal Plants Research, vol. 4, no. 6, pp. 477–483, 2010. View at Google Scholar · View at Scopus
  4. J. Morton, Fruits of Warm Climates, Julia Morton, 1987.
  5. K. A. Reynertson, A. M. Wallace, S. Adachi et al., “Bioactive depsides and anthocyanins from jaboticaba (Myrciaria cauliflora),” Journal of Natural Products, vol. 69, no. 8, pp. 1228–1230, 2006. View at Publisher · View at Google Scholar · View at Scopus
  6. S. Wu, K. Dastmalchi, C. Long, and E. J. Kennelly, “Metabolite profiling of jaboticaba (Myrciaria cauliflora) and other dark-colored fruit juices,” Journal of Agricultural and Food Chemistry, vol. 60, no. 30, pp. 7513–7525, 2012. View at Publisher · View at Google Scholar · View at Scopus
  7. F. Aqil, A. Gupta, R. Munagala et al., “Antioxidant and antiproliferative activities of anthocyanin/ellagitannin- enriched extracts from Syzygium cumini L. (Jamun, the Indian Blackberry),” Nutrition and Cancer, vol. 64, no. 3, pp. 428–438, 2012. View at Publisher · View at Google Scholar · View at Scopus
  8. C. Weng and G. Yen, “Flavonoids, a ubiquitous dietary phenolic subclass, exert extensive in vitro anti-invasive and in vivo anti-metastatic activities,” Cancer and Metastasis Reviews, vol. 31, no. 1-2, pp. 323–351, 2012. View at Publisher · View at Google Scholar · View at Scopus
  9. S. Shahrzad, K. Aoyagi, A. Winter, A. Koyama, and I. Bitsch, “Pharmacokinetics of gallic acid and its relative bioavailability from tea in healthy humans,” Journal of Nutrition, vol. 131, no. 4, pp. 1207–1210, 2001. View at Google Scholar · View at Scopus
  10. C. Chuang, H. Liu, L. Wu, C. Chen, J. T. Chang, and S. Hsu, “Gallic acid induces apoptosis of lung fibroblasts via a reactive oxygen species-dependent ataxia telangiectasia mutated-p53 activation pathway,” Journal of Agricultural and Food Chemistry, vol. 58, no. 5, pp. 2943–2951, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. S. Wu, J. Wu, Z. Yin et al., “Bioactive and marker compounds from two edible dark-colored Myrciaria fruits and the synthesis of jaboticabin,” Journal of Agricultural and Food Chemistry, vol. 61, no. 17, pp. 4035–4043, 2013. View at Publisher · View at Google Scholar · View at Scopus
  12. K. Y. Liu, Y. Wu, I. Liu, W. C. Yu, and J. Cheng, “Release of acetylcholine by syringin, an active principle of Eleutherococcus senticosus, to raise insulin secretion in Wistar rats,” Neuroscience Letters, vol. 434, no. 2, pp. 195–199, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. D. C. Altieri, “Survivin, cancer networks and pathway-directed drug discovery,” Nature Reviews Cancer, vol. 8, no. 1, pp. 61–70, 2008. View at Publisher · View at Google Scholar · View at Scopus
  14. F. Li, G. Ambrosini, E. Y. Chu et al., “Control of apoptosis and mitotic spindle checkpoint by survivin,” Nature, vol. 396, no. 6711, pp. 580–584, 1998. View at Publisher · View at Google Scholar · View at Scopus
  15. H. Li, H. Zhu, C. Xu, and J. Yuan, “Cleavage of BID by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis,” Cell, vol. 94, no. 4, pp. 491–501, 1998. View at Publisher · View at Google Scholar · View at Scopus
  16. I. Tamm, Y. Wang, E. Sausville et al., “IAP-family protein Survivin inhibits caspase activity and apoptosis induced by Fas (CD95), bax, caspases, and anticancer drugs,” Cancer Research, vol. 58, no. 23, pp. 5315–5320, 1998. View at Google Scholar · View at Scopus
  17. M. D. Esposti, “The roles of Bid,” Apoptosis, vol. 7, no. 5, pp. 433–440, 2002. View at Publisher · View at Google Scholar · View at Scopus
  18. Y. Guo, S. M. Srinivasula, A. Druilhe, T. Fernandes-Alnemri, and E. S. Alnemri, “Caspase-2 induces apoptosis by releasing proapoptotic proteins from mitochondria,” The Journal of Biological Chemistry, vol. 277, no. 16, pp. 13430–13437, 2002. View at Publisher · View at Google Scholar · View at Scopus
  19. E. A. Slee, S. A. Keogh, and S. J. Martin, “Cleavage of BID during cytotoxic drug and UV radiation-induced apoptosis occurs downstream of the point of Bcl-2 action and is catalysed by caspase-3: a potential feedback loop for amplification of apoptosis-associated mitochondrial cytochrome c release,” Cell Death and Differentiation, vol. 7, no. 6, pp. 556–565, 2000. View at Google Scholar · View at Scopus
  20. W. Brand-Williams, M. E. Cuvelier, and C. Berset, “Use of a free radical method to evaluate antioxidant activity,” Food Science and Technology, vol. 28, no. 1, pp. 25–30, 1995. View at Publisher · View at Google Scholar · View at Scopus
  21. C. Y. Hsu, “Antioxidant activity of extract from Polygonum aviculare L.,” Biological Research, vol. 39, no. 2, pp. 281–288, 2006. View at Google Scholar · View at Scopus
  22. N. Pellegrini, R. Re, M. Yang, and C. Rice-Evans, “Screening of dietary carotenoids and carotenoid-rich fruit extracts for antioxidant activities applying 2,2′-azinobis(3-ethylenebenzothiazoline-6-sulfonic acid radical cation decolorization assay,” Methods in Enzymology, vol. 299, pp. 379–389, 1998. View at Publisher · View at Google Scholar · View at Scopus
  23. A. G. Batista, S. A. Lenquiste, C. B. B. Cazarin et al., “Intake of jaboticaba peel attenuates oxidative stress in tissues and reduces circulating saturated lipids of rats with high-fat diet-induced obesity,” Journal of Functional Foods, vol. 6, pp. 450–461, 2014. View at Publisher · View at Google Scholar
  24. A. V. Leite-Legatti, A. G. Batista, N. R. V. Dragano et al., “Jaboticaba peel: antioxidant compounds, antiproliferative and antimutagenic activities,” Food Research International, vol. 49, no. 1, pp. 596–603, 2012. View at Publisher · View at Google Scholar · View at Scopus
  25. L. T. Abe, F. M. Lajolo, and M. I. Genovese, “Potential dietary sources of ellagic acid and other antioxidants among fruits consumed in Brazil: Jabuticaba (Myrciaria jaboticaba (Vell.) Berg),” Journal of the Science of Food and Agriculture, vol. 92, no. 8, pp. 1679–1687, 2012. View at Publisher · View at Google Scholar · View at Scopus
  26. V. C. de Castro, P. H. A. da Silva, E. B. de Oliveira, S. Desobry, and C. Humeau, “Extraction, identification and enzymatic synthesis of acylated derivatives of anthocyanins from jaboticaba (Myrciaria cauliflora) fruits,” International Journal of Food Science and Technology, vol. 49, no. 1, pp. 196–204, 2014. View at Publisher · View at Google Scholar · View at Scopus
  27. S. Fulda, “Tumor resistance to apoptosis,” International Journal of Cancer, vol. 124, no. 3, pp. 511–515, 2009. View at Publisher · View at Google Scholar · View at Scopus
  28. D. Hanahan and R. A. Weinberg, “Hallmarks of cancer: the next generation,” Cell, vol. 144, no. 5, pp. 646–674, 2011. View at Publisher · View at Google Scholar · View at Scopus
  29. S. Fulda and D. Vucic, “Targeting IAP proteins for therapeutic intervention in cancer,” Nature Reviews Drug Discovery, vol. 11, no. 2, pp. 109–124, 2012. View at Publisher · View at Google Scholar · View at Scopus
  30. J. Waligórska-Stachura, A. Jankowska, R. Waśko et al., “Survivin: prognostic tumor biomarker in human neoplasms: review,” Ginekologia Polska, vol. 83, no. 7, pp. 537–540, 2012. View at Google Scholar · View at Scopus