Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2014 (2014), Article ID 196034, 7 pages
http://dx.doi.org/10.1155/2014/196034
Research Article

Syn-Lethality: An Integrative Knowledge Base of Synthetic Lethality towards Discovery of Selective Anticancer Therapies

1Bioinformatics Research Centre (BIRC), School of Computer Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798
2Institute for Infocomm Research (I2R), 1 Fusionopolis Way, Singapore 138632
3Genome Institute of Singapore (GIS), Biopolis, Singapore 138672

Received 17 November 2013; Accepted 11 March 2014; Published 22 April 2014

Academic Editor: FangXiang Wu

Copyright © 2014 Xue-juan Li et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Synthetic lethality (SL) is a novel strategy for anticancer therapies, whereby mutations of two genes will kill a cell but mutation of a single gene will not. Therefore, a cancer-specific mutation combined with a drug-induced mutation, if they have SL interactions, will selectively kill cancer cells. While numerous SL interactions have been identified in yeast, only a few have been known in human. There is a pressing need to systematically discover and understand SL interactions specific to human cancer. In this paper, we present Syn-Lethality, the first integrative knowledge base of SL that is dedicated to human cancer. It integrates experimentally discovered and verified human SL gene pairs into a network, associated with annotations of gene function, pathway, and molecular mechanisms. It also includes yeast SL genes from high-throughput screenings which are mapped to orthologous human genes. Such an integrative knowledge base, organized as a relational database with user interface for searching and network visualization, will greatly expedite the discovery of novel anticancer drug targets based on synthetic lethality interactions. The database can be downloaded as a stand-alone Java application.