Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2014, Article ID 197960, 6 pages
http://dx.doi.org/10.1155/2014/197960
Clinical Study

Computation and Evaluation of Features of Surface Electromyogram to Identify the Force of Muscle Contraction and Muscle Fatigue

1Biosignals Lab, School of Electrical and Computer Engineering, RMIT University, GPO Box 2476, Melbourne, VIC 3001, Australia
2Faculty of Engineering and Information Technology (FEIT), University of Technology Sydney (UTS), Sydney, NSW 2007, Australia

Received 4 March 2014; Accepted 20 May 2014; Published 4 June 2014

Academic Editor: Terry K. Smith

Copyright © 2014 Sridhar P. Arjunan et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. V. Basmajian and C. J. de Luca, Muscles Alive: Their Functions Revealed by Electromyography, Williams and Wilkins, Baltimore, Md, USA, 1985.
  2. R. Merletti and S. Roy, “Myoelectric and mechanical manifestations of muscle fatigue in voluntary contractions,” Journal of Orthopaedic and Sports Physical Therapy, vol. 24, no. 6, pp. 342–353, 1996. View at Google Scholar · View at Scopus
  3. T. J. Dartnall, M. A. Nordstrom, and J. G. Semmler, “Motor unit synchronization is increased in biceps brachii after exercise-induced damage to elbow flexor muscles,” Journal of Neurophysiology, vol. 99, no. 2, pp. 1008–1019, 2008. View at Publisher · View at Google Scholar · View at Scopus
  4. F. E. Marino, M. Gard, and E. J. Drinkwater, “The limits to exercise performance and the future of fatigue research,” British Journal of Sports Medicine, vol. 45, no. 1, pp. 65–67, 2011. View at Publisher · View at Google Scholar · View at Scopus
  5. F. A. Bainbridge, The Physiology of Muscular Exercise, Longman, Green and Co, New York, NY, USA, 3rd edition, 1931.
  6. S. G. Boe, C. L. Rice, and T. J. Doherty, “Estimating contraction level using root mean square amplitude in control subjects and patients with neuromuscular disorders,” Archives of Physical Medicine and Rehabilitation, vol. 89, no. 4, pp. 711–718, 2008. View at Publisher · View at Google Scholar · View at Scopus
  7. R. Merletti and P. Parker, Electromyography, John Wiley & Sons, New York, NY, USA, 2004.
  8. D. K. Kumar, N. D. Pah, and A. Bradley, “Wavelet analysis of surface electromyography to determine muscle fatigue,” IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 11, no. 4, pp. 400–406, 2003. View at Publisher · View at Google Scholar · View at Scopus
  9. D. Moshou, I. Hostens, G. Papaioannou, and H. Ramon, “Dynamic muscle fatigue detection using self-organizing maps,” Applied Soft Computing Journal, vol. 5, no. 4, pp. 391–398, 2005. View at Publisher · View at Google Scholar · View at Scopus
  10. S. P. Arjunan and D. K. Kumar, “Decoding subtle forearm flexions using fractal features of surface electromyogram from single and multiple sensors,” Journal of NeuroEngineering and Rehabilitation, vol. 7, no. 1, article 53, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. G. Wang, X.-M. Ren, L. Li, and Z.-Z. Wang, “Multifractal analysis of surface EMG signals for assessing muscle fatigue during static contractions,” Journal of Zhejiang University A: Science, vol. 8, no. 6, pp. 910–915, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. G. V. Dimitrov, T. I. Arabadzhiev, K. N. Mileva, J. L. Bowtell, N. Crichton, and N. A. Dimitrova, “Muscle fatigue during dynamic contractions assessed by new spectral indices,” Medicine and Science in Sports and Exercise, vol. 38, no. 11, pp. 1971–1979, 2006. View at Publisher · View at Google Scholar · View at Scopus
  13. N. A. Dimitrova, T. I. Arabadzhiev, J.-Y. Hogrel, and G. V. Dimitrov, “Fatigue analysis of interference EMG signals obtained from biceps brachii during isometric voluntary contraction at various force levels,” Journal of Electromyography and Kinesiology, vol. 19, no. 2, pp. 252–258, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. D. K. Kumar, S. P. Arjunan, and G. R. Naik, “Measuring increase in synchronization to identify muscle endurance limit,” IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 19, no. 5, pp. 578–587, 2011. View at Publisher · View at Google Scholar · View at Scopus
  15. S. Minning, C. A. Eliot, T. L. Uhl, and T. R. Malone, “EMG analysis of shoulder muscle fatigue during resisted isometric shoulder elevation,” Journal of Electromyography and Kinesiology, vol. 17, no. 2, pp. 153–159, 2007. View at Publisher · View at Google Scholar · View at Scopus
  16. D. Farina, A. Holobar, R. Merletti, and R. M. Enoka, “Decoding the neural drive to muscles from the surface electromyogram,” Clinical Neurophysiology, vol. 121, no. 10, pp. 1616–1623, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. P. Bonato, S. H. Roy, M. Knaflitz, and C. J. de Luca, “Time frequency parameters of the surface myoelectric signal for assessing muscle fatigue during cyclic dynamic contractions,” IEEE Transactions on Biomedical Engineering, vol. 48, no. 7, pp. 745–753, 2001. View at Publisher · View at Google Scholar · View at Scopus
  18. M. McCaffery and A. Beebe, Pain: Clinical Manual for Nursing Practice, V. V. Mosby Company, Baltimore, Md, USA, 1993.
  19. M. González-Izal, A. Malanda, I. Navarro-Amézqueta et al., “EMG spectral indices and muscle power fatigue during dynamic contractions,” Journal of Electromyography and Kinesiology, vol. 20, no. 2, pp. 233–240, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. G. T. Allison and T. Fujiwara, “The relationship between EMG median frequency and low frequency band amplitude changes at different levels of muscle capacity,” Clinical Biomechanics, vol. 17, no. 6, pp. 464–469, 2002. View at Publisher · View at Google Scholar · View at Scopus
  21. G. R. Naik, D. K. Kumar, V. Yadav, K. Wheeler, and S. Arjunan, “Testing of motor unit synchronization model for localized muscle fatigue,” in Proceedings of the 31st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBS '09), pp. 360–363, Minneapolis, Minn, USA, September 2009. View at Publisher · View at Google Scholar · View at Scopus
  22. A. Cichocki and S.-I. Amari, Adaptive Blind Signal and Image Processing, John Wiley & Sons, New York, NY, USA, 2002.
  23. C. D. Meyer, Matrix Analysis and Applied Linear Algebra, Cambridge University Press, Cambridge, UK, 2000.
  24. M. A. Oskoei and H. Hu, “Support vector machine-based classification scheme for myoelectric control applied to upper limb,” IEEE Transactions on Biomedical Engineering, vol. 55, no. 8, pp. 1956–1965, 2008. View at Publisher · View at Google Scholar