Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2014, Article ID 204340, 15 pages
http://dx.doi.org/10.1155/2014/204340
Research Article

Bioassay Directed Isolation and Biological Evaluation of Compounds Isolated from Rubus fairholmianus Gard.

1Bioprospecting Laboratory, Department of Botany, School of Life Sciences, Bharathiar University, Coimbatore, Tamil Nadu 641 046, India
2Phytochemistry Division, Centre for Medicinal Plants Research, Arya Vaidya Sala, Kottakkal 676 503, India
3Department of Bioinformatics, Bharathiar University, Coimbatore, Tamil Nadu 641 046, India

Received 13 February 2014; Revised 27 March 2014; Accepted 8 April 2014; Published 1 September 2014

Academic Editor: Kuo-Chen Chou

Copyright © 2014 Blassan Plackal George et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. E. Finn, “Rubus spp., blackberry,” in The Encyclopedia of Fruits and Nuts, J. Janick and R. E. Paull, Eds., pp. 348–351, CABI, Cambridge, Mass, USA, 2008. View at Google Scholar
  2. A. V. Patel, J. Rojas-Vera, and C. G. Dacke, “Therapeutic constituents and actions of Rubus species,” Current Medicinal Chemistry, vol. 11, no. 11, pp. 1501–1512, 2004. View at Publisher · View at Google Scholar · View at Scopus
  3. N. J. Das, S. P. Saikia, S. Sarkar, and K. Devi, “Medicinal plants of north kamrup district of Assam used in primary health care system,” International Journal of Traditional Knowledge, vol. 5, no. 22, pp. 489–493, 2006. View at Google Scholar
  4. J. Barukial and J. N. Sarmah, “Ethnomedicinal plants used by the people of Golaghat district, Assam, India,” International Journal of Medicinal and Aromatic Plant, vol. 1, no. 3, pp. 203–211, 2011. View at Google Scholar
  5. B. P. George, T. Parimelazhagan, and R. Chandran, “Evaluation of total phenolic content, antioxidant and analgesic potential of Rubus fairholmianus gard,” International Journal of Pharmacy and Pharmaceutical Sciences, vol. 5, no. 3, pp. 484–488, 2013. View at Google Scholar · View at Scopus
  6. B. P. George, T. Parimelazhagan, and R. Chandran, “Anti-inflammatory and wound healing properties of Rubus fairholmianus Gard. root—an in vivo study,” Industrial Crops and Products, vol. 54, pp. 216–225, 2014. View at Google Scholar
  7. B. P. George, T. Parimelazhagan, and S. Saravanan, “Anti-inflammatory, analgesic and antipyretic activities of Rubus ellipticus smith. leaf methanol extract,” International Journal of Pharmacy and Pharmaceutical Sciences, vol. 5, no. 2, pp. 220–224, 2013. View at Google Scholar · View at Scopus
  8. B. P. George, T. Parimelazhagan, S. Saravanan, and R. Chandran, “Anti-inflammatory, analgesic and antipyretic properties of Rubus niveus Thunb . root acetone extract,” Pharmacologia, vol. 4, no. 3, pp. 228–235, 2013. View at Google Scholar
  9. B. P. George, T. Parimelazhagan, T. K. Yamini, and T. Sajeesh, “Antitumor and wound healing properties of Rubus ellipticus Smith,” Journal of Acupuncture and Meridian Studies, 2013. View at Publisher · View at Google Scholar
  10. K. R. Määttä-Riihinen, A. Kamal-Eldin, and A. R. Törrönen, “Identification and quantification of phenolic compounds in berries of Fragaria and Rubus species (family rosaceae),” Journal of Agricultural and Food Chemistry, vol. 52, no. 20, pp. 6178–6187, 2004. View at Publisher · View at Google Scholar · View at Scopus
  11. C. Mertz, V. Cheynier, Z. Günata, and P. Brat, “Analysis of phenolic compounds in two blackberry species (Rubus glaucus and Rubus adenotrichus) by high-performance liquid chromatography with diode array detection and electrospray ion trap mass spectrometry,” Journal of Agricultural and Food Chemistry, vol. 55, no. 21, pp. 8616–8624, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. G. E. Pantelidis, M. Vasilakakis, G. A. Manganaris, and G. Diamantidis, “Antioxidant capacity, phenol, anthocyanin and ascorbic acid contents in raspberries, blackberries, red currants, gooseberries and Cornelian cherries,” Food Chemistry, vol. 102, no. 3, pp. 777–783, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. J. Reyes-Carmona, G. G. Yousef, R. A. Martínez-Peniche, and M. A. Lila, “Antioxidant capacity of fruit extracts of blackberry (Rubus sp.) produced in different climatic regions,” Journal of Food Science, vol. 70, no. 7, pp. S497–S503, 2005. View at Publisher · View at Google Scholar · View at Scopus
  14. S. Y. Wang and H. Lin, “Antioxidant activity in fruits and leaves of blackberry, raspberry, and strawberry varies with cultivar and developmental stage,” Journal of Agricultural and Food Chemistry, vol. 48, no. 2, pp. 140–146, 2000. View at Publisher · View at Google Scholar · View at Scopus
  15. A. Szajdek and E. J. Borowska, “Bioactive compounds and health-promoting properties of berry fruits: a review,” Plant Foods for Human Nutrition, vol. 63, no. 4, pp. 147–156, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. M. Laguerre, J. Lecomte, and P. Villeneuve, “Evaluation of the ability of antioxidants to counteract lipid oxidation: existing methods, new trends and challenges,” Progress in Lipid Research, vol. 46, no. 5, pp. 244–282, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. P. Duh, “Antioxidant activity of burdock (Arctium lappa linné): Its scavenging effect on free-radical and active oxygen,” Journal of the American Oil Chemists' Society, vol. 75, no. 4, pp. 455–461, 1998. View at Publisher · View at Google Scholar · View at Scopus
  18. W. Zheng and S. Y. Wang, “Antioxidant activity and phenolic compounds in selected herbs,” Journal of Agricultural and Food Chemistry, vol. 49, no. 11, pp. 5165–5170, 2001. View at Publisher · View at Google Scholar · View at Scopus
  19. V. Sharma, H. V. Kumar, and L. J. M. Rao, “Influence of milk and sugar on antioxidant potential of black tea,” Food Research International, vol. 41, no. 2, pp. 124–129, 2008. View at Publisher · View at Google Scholar · View at Scopus
  20. M. S. Blois, “Antioxidant determinations by the use of a stable free radical,” Nature, vol. 181, no. 4617, pp. 1199–1200, 1958. View at Publisher · View at Google Scholar · View at Scopus
  21. R. Re, N. Pellegrini, A. Proteggente, A. Pannala, M. Yang, and C. Rice-Evans, “Antioxidant activity applying an improved ABTS radical cation decolorization assay,” Free Radical Biology and Medicine, vol. 26, no. 9-10, pp. 1231–1237, 1999. View at Publisher · View at Google Scholar · View at Scopus
  22. K. C. Chou, D. Q. Wei, and W. Z. Zhong, “Binding mechanism of coronavirus main proteinase with ligands and its implication to drug design against SARS,” Biochemical and Biophysical Research Communications, vol. 308, no. 1, pp. 148–151, 2003. View at Publisher · View at Google Scholar · View at Scopus
  23. Q. Du, S. Wang, D. Wei, S. Sirois, and K. Chou, “Molecular modeling and chemical modification for finding peptide inhibitor against severe acute respiratory syndrome coronavirus main proteinase,” Analytical Biochemistry, vol. 337, no. 2, pp. 262–270, 2005. View at Publisher · View at Google Scholar · View at Scopus
  24. L. Cai, Y. Wang, J. Wang, and K. Chou, “Identification of proteins interacting with human SP110 during the process of viral infections,” Medicinal Chemistry, vol. 7, no. 2, pp. 121–126, 2011. View at Publisher · View at Google Scholar · View at Scopus
  25. Q. H. Liao, Q. Z. Gao, J. Wei, and K. C. Chou, “Docking and molecular dynamics study on the inhibitory activity of novel inhibitors on epidermal growth factor receptor (EGFR),” Medicinal Chemistry, vol. 7, no. 1, pp. 24–31, 2011. View at Publisher · View at Google Scholar · View at Scopus
  26. Y. Ma, S. Q. Wang, W. R. Xu, R. L. Wang, and K. C. Chou, “Design novel dual agonists for treating type-2 diabetes by targeting peroxisome proliferator-activated receptors with core hopping approach,” PLoS ONE, vol. 7, no. 6, Article ID e38546, 2012. View at Publisher · View at Google Scholar
  27. J. Wang and K. Chou, “Insights into the mutation-induced HHH syndrome from modeling human mitochondrial ornithine transporter-1,” PLoS ONE, vol. 7, no. 1, Article ID e31048, 2012. View at Publisher · View at Google Scholar · View at Scopus
  28. G. Madhavi Sastry, M. Adzhigirey, T. Day, R. Annabhimoju, and W. Sherman, “Protein and ligand preparation: parameters, protocols, and influence on virtual screening enrichments,” Journal of Computer-Aided Molecular Design, vol. 27, no. 3, pp. 221–234, 2013. View at Publisher · View at Google Scholar · View at Scopus
  29. Lig Prep, Schrodinger Release 2013-1, LigPrep, version 2.6, Schrodinger, LLC, New York, NY, USA, 2013.
  30. R. A. Friesner, R. B. Murphy, M. P. Repasky et al., “Extra precision glide: Docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes,” Journal of Medicinal Chemistry, vol. 49, no. 21, pp. 6177–6196, 2006. View at Publisher · View at Google Scholar · View at Scopus
  31. T. A. Halgren, R. B. Murphy, R. A. Friesner et al., “Glide: a new approach for rapid, accurate docking and scoring. 2. Enrichment factors in database screening,” Journal of Medicinal Chemistry, vol. 47, no. 7, pp. 1750–1759, 2004. View at Publisher · View at Google Scholar · View at Scopus
  32. R. A. Friesner, J. L. Banks, R. B. Murphy et al., “Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy,” Journal of Medicinal Chemistry, vol. 47, no. 7, pp. 1739–1749, 2004. View at Publisher · View at Google Scholar · View at Scopus
  33. F. Shahidi and M. Naczk, Phenolics in Food and Nutraceuticals, CRC Press, Boca Raton, Fla, USA, 2nd edition, 2003.
  34. P. Vadivelan, R. R. Kumar, S. Bhadra, A. Shanish, K. Elango, and B. Suresh, “Evaluation of antioxidant activity of root extracts of Rubus ellipticus Smith.,” Hygeia, vol. 9, no. 1, pp. 74–78, 2009. View at Google Scholar
  35. S. M. Motamed and F. Naghibi, “Antioxidant activity of some edible plants of the Turkmen Sahra region in northern Iran,” Food Chemistry, vol. 119, no. 4, pp. 1637–1642, 2010. View at Publisher · View at Google Scholar · View at Scopus
  36. A. Ruiz, I. Hermosín-Gutiérrez, C. Vergara et al., “Anthocyanin profiles in south Patagonian wild berries by HPLC-DAD-ESI-MS/MS,” Food Research International, vol. 51, no. 2, pp. 706–713, 2013. View at Publisher · View at Google Scholar · View at Scopus
  37. M. Kubota, C. Ishikawa, Y. Sugiyama, S. Fukumoto, T. Miyagi, and S. Kumazawa, “Anthocyanins from the fruits of Rubus croceacanthus and Rubus sieboldii, wild berry plants from Okinawa, Japan,” Journal of Food Composition and Analysis, vol. 28, no. 2, pp. 179–182, 2012. View at Publisher · View at Google Scholar · View at Scopus
  38. E. A. Porter, A. A. van Den Bos, G. C. Kite, N. C. Veitch, and M. S. J. Simmonds, “Flavonol glycosides acylated with 3-hydroxy-3-methylglutaric acid as systematic characters in Rosa,” Phytochemistry, vol. 81, pp. 90–96, 2012. View at Publisher · View at Google Scholar · View at Scopus
  39. D. C. Estupiñan, S. J. Schwartz, and G. A. Garzón, “Antioxidant activity, total phenolics content, anthocyanin, and colour stability of isotonic model beverages coloured with Andes berry (Rubus glaucus Benth) anthocyanin powder,” Journal of Food Science, vol. 76, no. 1, pp. S26–S34, 2011. View at Publisher · View at Google Scholar · View at Scopus
  40. C. Vasco, K. R. Riihinen, J. Ruales, and A. Kamal-Eldin, “Phenolic compounds in rosaceae fruits from Ecuador,” Journal of Agricultural and Food Chemistry, vol. 57, no. 4, pp. 1204–1212, 2009. View at Publisher · View at Google Scholar · View at Scopus
  41. G. A. Garzón, K. M. Riedl, and S. J. Schwartz, “Determination of anthocyanins, total phenolic content, and antioxidant activity in Andes berry (Rubus glaucus Benth),” Journal of Food Science, vol. 74, no. 3, pp. 227–232, 2009. View at Publisher · View at Google Scholar · View at Scopus
  42. H. Kim, S. J. Park, S. Hyun et al., “Biochemical monitoring of black raspberry (Rubus coreanus Miquel) fruits according to maturation stage by 1H NMR using multiple solvent systems,” Food Research International, vol. 44, no. 7, pp. 1977–1987, 2011. View at Publisher · View at Google Scholar · View at Scopus
  43. C. S. Ku and S. P. Mun, “Optimization of the extraction of anthocyanin from Bokbunja (Rubus coreanus Miq) marc produced during traditional wine processing and characterization of the extracts,” Bioresource Technology, vol. 99, no. 17, pp. 8325–8330, 2008. View at Publisher · View at Google Scholar · View at Scopus
  44. J. Bae, S. S. Lim, J. Cho, and Y. Kang, “Protective actions of Rubus coreanus ethanol extract on collagenous extracellular matrix in ultraviolet-B irradiation induced human dermal fibroblasts,” Nutrition Research and Practice, vol. 1, no. 4, pp. 279–284, 2007. View at Publisher · View at Google Scholar
  45. N. Deighton, R. Brennan, C. Finn, and H. V. Davies, “Antioxidant properties of domesticated and wild Rubus species,” Journal of Agricultural and Food Chemistry, vol. 80, no. 9, pp. 1307–1313, 2000. View at Publisher · View at Google Scholar
  46. F. J. Wyzgoski, L. Paudel, P. L. Rinaldi et al., “Modeling relationships among active components in black raspberry (Rubus occidentalis L.) fruit extracts using high-resolution1H nuclear magnetic resonance (NMR) spectroscopy and multivariate statistical analysis,” Journal of Agricultural and Food Chemistry, vol. 58, no. 6, pp. 3407–3414, 2010. View at Publisher · View at Google Scholar · View at Scopus
  47. M. Dossett, J. Lee, and C. E. Finn, “Variation in anthocyanins and total phenolics of black raspberry populations,” Journal of Functional Foods, vol. 2, no. 4, pp. 292–297, 2010. View at Publisher · View at Google Scholar · View at Scopus
  48. Y. Ling, C. Ren, S. R. Mallery et al., “A rapid and sensitive LC-MS/MS method for quantification of four anthocyanins and its application in a clinical pharmacology study of a bioadhesive black raspberry gel,” Journal of Chromatography B, vol. 877, no. 31, pp. 4027–4034, 2009. View at Publisher · View at Google Scholar · View at Scopus
  49. M. Dossett, J. Lee, and C. E. Finn, “Inheritance of phenological, vegetative, and fruit chemistry traits in black raspberry,” Journal of the American Society for Horticultural Science, vol. 133, no. 3, pp. 408–417, 2008. View at Google Scholar · View at Scopus
  50. A. Z. Tulio Jr., R. N. Reese, F. J. Wyzgoski et al., “Cyanidin 3-rutinoside and cyanidin 3-xylosylrutinoside as primary phenolic antioxidants in black raspberry,” Journal of Agricultural and Food Chemistry, vol. 56, no. 6, pp. 1880–1888, 2008. View at Publisher · View at Google Scholar · View at Scopus
  51. Q. Tian, M. M. Giusti, G. D. Stoner, and S. J. Schwartz, “Characterization of a new anthocyanin in black raspberries (Rubus occidentalis) by liquid chromatography electrospray ionization tandem mass spectrometry,” Food Chemistry, vol. 94, no. 3, pp. 465–468, 2006. View at Publisher · View at Google Scholar · View at Scopus
  52. C. S. Bowen-Forbes, V. Mulabagal, Y. Liu, and M. G. Nair, “Ursolic acid analogues: non-phenolic functional food components in Jamaican raspberry fruits,” Food Chemistry, vol. 116, no. 3, pp. 633–637, 2009. View at Publisher · View at Google Scholar · View at Scopus
  53. A. R. Venkitaraman, “Functions of BRCA1 and BRCA2 in the biological response to DNA damage,” Journal of Cell Science, vol. 114, no. 20, pp. 3591–3598, 2001. View at Google Scholar · View at Scopus
  54. S. P. Raja, K. Kathiresan, and S. Sahu, “In silico docking analysis of mangrove-derived compounds against breast cancer protein (BRCA1),” International Multidisciplinary Research Journal, vol. 1, no. 1, pp. 9–12, 2011. View at Google Scholar
  55. K. Saravanakumar, S. K. Sahu, and K. Kathiresan, “In-silico studies on fungal metabolites against breast cancer protein (BRCA1),” Asian Pacific Journal of Tropical Biomedicine, pp. 1–3, 2012. View at Google Scholar
  56. J. A. Clapperton, I. A. Manke, D. M. Lowery et al., “Structure and mechanism of BRCA1 BRCT domain recognition of phosphorylated BACH1 with implications for cancer,” Nature Structural and Molecular Biology, vol. 11, no. 6, pp. 512–518, 2004. View at Publisher · View at Google Scholar · View at Scopus
  57. A. W. Oliver, S. Swift, C. J. Lord, A. Ashworth, and L. H. Pearl, “Structural basis for recruitment of BRCA2 by PALB2,” EMBO Reports, vol. 10, no. 9, pp. 990–996, 2009. View at Publisher · View at Google Scholar · View at Scopus
  58. R. Gautam, S. M. Jachak, V. Kumar, and C. G. Mohan, “Synthesis, biological evaluation and molecular docking studies of stellatin derivatives as cyclooxygenase (COX-1, COX-2) inhibitors and anti-inflammatory agents,” Bioorganic and Medicinal Chemistry Letters, vol. 21, no. 6, pp. 1612–1616, 2011. View at Publisher · View at Google Scholar · View at Scopus
  59. S. Olgen, E. Akaho, and D. Nebioglu, “Synthesis and receptor docking studies of N-substituted indole-2-carboxylic acid esters as a search for COX-2 selective enzyme inhibitors,” European Journal of Medicinal Chemistry, vol. 36, no. 9, pp. 747–770, 2001. View at Publisher · View at Google Scholar · View at Scopus
  60. K. M. Amin, M. M. Kamel, M. M. Anwar, M. Khedr, and Y. M. Syam, “Synthesis, biological evaluation and molecular docking of novel series of spiro [(2H,3H) quinazoline-2,1′- cyclohexan]-4(1H)- one derivatives as anti-inflammatory and analgesic agents,” European Journal of Medicinal Chemistry, vol. 45, no. 6, pp. 2117–2131, 2010. View at Publisher · View at Google Scholar · View at Scopus
  61. A. A.-. Abdel-Aziz, K. E. H. Eltahir, and Y. A. Asiri, “Synthesis, anti-inflammatory activity and COX-1/COX-2 inhibition of novel substituted cyclic imides. Part 1. Molecular docking study,” European Journal of Medicinal Chemistry, vol. 46, no. 5, pp. 1648–1655, 2011. View at Publisher · View at Google Scholar · View at Scopus
  62. L. Basile, S. Álvarez, A. Blanco et al., “Sulfonilamidothiopyrimidone and thiopyrimidone derivatives as selective COX-2 inhibitors: synthesis, biological evaluation, and docking studies,” European Journal of Medicinal Chemistry, vol. 57, pp. 149–161, 2012. View at Publisher · View at Google Scholar · View at Scopus
  63. M. A.-A. El-Sayed, N. I. Abdel-Aziz, A. A.-M. Abdel-Aziz, A. S. El-Azab, Y. A. Asiri, and K. E. H. Eltahir, “Design, synthesis, and biological evaluation of substituted hydrazone and pyrazole derivatives as selective COX-2 inhibitors: molecular docking study,” Bioorganic & Medicinal Chemistry, vol. 19, no. 11, pp. 3416–3424, 2011. View at Publisher · View at Google Scholar · View at Scopus
  64. B. S. Selinsky, K. Gupta, C. T. Sharkey, and P. J. Loll, “Structural analysis of NSAID binding by prostaglandin H2 synthase: time-dependent and time-independent inhibitors elicit identical enzyme conformations,” Biochemistry, vol. 40, no. 17, pp. 5172–5180, 2001. View at Publisher · View at Google Scholar · View at Scopus
  65. K. Chou, “Structural bioinformatics and its impact to biomedical science,” Current Medicinal Chemistry, vol. 11, no. 16, pp. 2105–2134, 2004. View at Publisher · View at Google Scholar · View at Scopus
  66. K. Chou, K. D. Watenpaugh, and R. L. Heinrikson, “A model of the complex between cyclin-dependent kinase 5 and the activation domain of neuronal Cdk5 activator,” Biochemical and Biophysical Research Communications, vol. 259, no. 2, pp. 420–428, 1999. View at Publisher · View at Google Scholar · View at Scopus
  67. J. F. Wang and K. C. Chou, “Insight into the molecular switch mechanism of human Rab5a from molecular dynamics simulations,” Biochemical and Biophysical Research Communications, vol. 390, no. 3, pp. 608–612, 2009. View at Publisher · View at Google Scholar · View at Scopus
  68. K. C. Chou, “Low-frequency resonance and cooperativity of hemoglobin,” Trends in Biochemical Sciences, vol. 14, no. 6, pp. 212–213, 1989. View at Publisher · View at Google Scholar · View at Scopus
  69. J. R. Schnell and J. J. Chou, “Structure and mechanism of the M2 proton channel of influenza A virus,” Nature, vol. 451, no. 7178, pp. 591–595, 2008. View at Publisher · View at Google Scholar · View at Scopus
  70. K. Chou, “Low-frequency collective motion in biomacromolecules and its biological functions,” Biophysical Chemistry, vol. 30, no. 1, pp. 3–48, 1988. View at Publisher · View at Google Scholar · View at Scopus