Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2014, Article ID 215097, 9 pages
http://dx.doi.org/10.1155/2014/215097
Research Article

Osteoblasts Growth Behaviour on Bio-Based Calcium Carbonate Aragonite Nanocrystal

1Laboratory of Molecular Biomedicine, Institute of Bioscience, Universiti Putra Malaysia (UPM), 43400 Serdang, Selangor, Malaysia
2Faculty of Veterinary Medicine, Universiti Putra Malaysia (UPM), 43400 Serdang, Selangor, Malaysia

Received 17 November 2013; Revised 13 January 2014; Accepted 19 January 2014; Published 6 March 2014

Academic Editor: Maqusood Ahamed

Copyright © 2014 Abdullahi Shafiu Kamba and Zuki Abu Bakar Zakaria. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. F. Sahari and B. M. Y. Saiful, “Cockle shell in Artificial reef construction,” in Proceedings of the 3rd International Conference of Applied and Creative Art Proceedings, Faculty of Applied and Creative Art, Universiti Malaysia Sarawak, July 2011.
  2. A. S. Kamba, M. Ismail, T. A. T. Ibrahim, and Z. A. B. Zakaria, “Synthesis and characterisation of calcium carbonate aragonite nanocrystals from cockle shell powder (anadara granosa),” Journal of Nanomaterials, vol. 2013, Article ID 398357, 9 pages, 2013. View at Publisher · View at Google Scholar
  3. A. J. Awang-Hazmi, A. B. Z. Zuki, M. M. Nordin, A. Jalila, and Y. Norimah, “Mineral composition of the cockle (Anadara Granosa) shells of west coast of peninsular Malaysia and its potential as biomaterial for use in bone repair,” Journal of Animal and Veterinary Advances, vol. 6, no. 5, pp. 591–594, 2007. View at Google Scholar
  4. H. Liao, H. Mutvei, M. Sjöström, L. Hammarström, and J. Li, “Tissue responses to natural aragonite (Margaritifera shell) implants in vivo,” Biomaterials, vol. 21, no. 5, pp. 457–468, 2000. View at Publisher · View at Google Scholar · View at Scopus
  5. H. Samir, M. Bouchemi, N. Slimane, and Z. Azari, “Physical and chemical characterization of adsorbed protein onto gold electrode functionalized with Tunisian coral and nacre,” Materials Science and Engineering C, vol. 33, pp. 537–542, 2013. View at Google Scholar
  6. J. L. Irigaray, H. Oudadesse, T. Sauvage et al., “Comparison of the ossification kinetics after implantation of a radioactivated coral and a natural coral,” Journal of Materials Science, vol. 6, no. 4, pp. 230–234, 1995. View at Publisher · View at Google Scholar · View at Scopus
  7. C. Müller-Mai, C. Voigt, S. R. De Almeida Reis, H. Herbst, and U. M. Gross, “Substitution of natural coral by cortical bone and bone marrow in the rat femur. Part II SEM, TEM, and in situ hybridization,” Journal of Materials Science, vol. 7, no. 8, pp. 479–488, 1996. View at Google Scholar · View at Scopus
  8. S. N. Gopal, Y. Z. Pan, L. Li, and C. B. He, “Nanocomposites for bone tissue regeneration,” Review Nanomedicine, vol. 8, no. 4, pp. 639–653, 2013. View at Google Scholar
  9. J. C. Chen, C. J. Shih, J. C. Kung, C. C. Hung, C. H. Hsieh, and M. J. Hou, “Mineralization and osteoblast cells response of nanograde pearl powders,” Journal of Nanomaterials, vol. 2013, Article ID 752863, 7 pages, 2013. View at Publisher · View at Google Scholar
  10. N. Tran and T. J. Webster, “Increased osteoblast functions in the presence of hydroxyapatite-coated iron oxide nanoparticles,” Acta Biomaterialia, vol. 7, no. 3, pp. 1298–1306, 2011. View at Publisher · View at Google Scholar · View at Scopus
  11. S.-J. Choi, J.-M. Oh, and J.-H. Choy, “Toxicological effects of inorganic nanoparticles on human lung cancer A549 cells,” Journal of Inorganic Biochemistry, vol. 103, no. 3, pp. 463–471, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. M. Hernández-Ortiz, S. A. Laura, H. Genoveva et al., “Biocompatibility of crystalline opal nanoparticles,” BioMedical Engineering OnLine, vol. 11, article 78, 2012. View at Google Scholar
  13. C. E. Tanase, A. Sartoris, C. J. Kirkpatrick, M. IPopa, L. Verestiuc, and R. E. Unger, “In vitro evaluation of biomimetic chitosan-calcium phosphate scaffolds with potential application in bone tissue engineering,” Biomedical Material, vol. 8, no. 2, Article ID 025002, 2013. View at Google Scholar
  14. J.-M. Schlaeppi, S. Gutzwiller, G. Finkenzeller, and B. Fournier, “1,25-dihydroxyvitamin D3 induces the expression of vascular endothelial growth factor in osteoblastic cells,” Endocrine Research, vol. 23, no. 3, pp. 213–229, 1997. View at Google Scholar · View at Scopus
  15. G. H. Deckers, W. G. E. J. Schoonen, and H. J. Kloosterboer, “Influence of the substitution of 11-methylene, Δ15, and/or 18-methyl groups in norethisterone on receptor binding, transactivation assays and biological activities in animals,” Journal of Steroid Biochemistry and Molecular Biology, vol. 74, no. 3, pp. 83–92, 2000. View at Publisher · View at Google Scholar · View at Scopus
  16. J. E. Sanders, Y.-N. Wang, S. G. Malcolm, and S. E. Lamont, “Biomaterial mesh seeded with vascular remnants from a quail embryo has a significant and fast vascular templating effect on host implant tissuea,” Tissue Engineering, vol. 9, no. 6, pp. 1271–1279, 2003. View at Publisher · View at Google Scholar · View at Scopus
  17. X. Rausch-fan, Z. Qu, M. Wieland, M. Matejka, and A. Schedle, “Differentiation and cytokine synthesis of human alveolar osteoblasts compared to osteoblast-like cells (MG63) in response to titanium surfaces,” Dental Materials, vol. 24, no. 1, pp. 102–110, 2008. View at Publisher · View at Google Scholar · View at Scopus
  18. R. A. Peattie, A. P. Nayate, M. A. Firpo, J. Shelby, R. J. Fisher, and G. D. Prestwich, “Stimulation of in vivo angiogenesis by cytokine-loaded hyaluronic acid hydrogel implants,” Biomaterials, vol. 25, no. 14, pp. 2789–2798, 2004. View at Publisher · View at Google Scholar · View at Scopus