Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2014, Article ID 231589, 14 pages
http://dx.doi.org/10.1155/2014/231589
Research Article

Retrotransposon-Based Molecular Markers for Analysis of Genetic Diversity within the Genus Linum

1Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
2Department of Higher Plants, Lomonosov Moscow State University, Moscow 119991, Russia
3Research Institute of Physico-Chemical Medicine, Moscow 119435, Russia
4Institute of Genetics and Cytology, National Academy of Science of Belarus, 220072 Minsk, Belarus
5Research Center for Obstetrics, Gynecology and Perinatology, Moscow 117997, Russia
6All-Russian Research Institute for Flax of the Russian Academy of Agricultural Sciences, Torzhok 172002, Russia

Received 25 April 2014; Revised 18 July 2014; Accepted 1 August 2014; Published 27 August 2014

Academic Editor: Peter F. Stadler

Copyright © 2014 Nataliya V. Melnikova et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. J. Ockendon and S. M. Walters, Linaceae, Cambridge University Press, Cambridge, Mass, USA, 1968.
  2. S. A. Yuzepchuk, “Genus Linum—Linaceae Dumort,” in Flora SSSR (Flora of the Soviet Union), B. K. Shishkin, Ed., vol. 14, pp. 84–146, Izdatel’stvo Akademii Nauk, Leningrad, Russia, 1949. View at Google Scholar
  3. T. V. Egorova, Genus Linum, Linaceae, St Petersburg Publishing, 1996.
  4. J. McDill, M. Repplinger, B. B. Simpson, and J. W. Kadereit, “The phylogeny of Linum and Linaceae subfamily Linoideae, with implications for their systematics, biogeography, and evolution of heterostyly,” Systematic Botany, vol. 34, no. 2, pp. 386–405, 2009. View at Publisher · View at Google Scholar · View at Scopus
  5. H. Helbaek, “Domestication of food plants in the old world,” Science, vol. 130, no. 3372, pp. 365–372, 1959. View at Google Scholar · View at Scopus
  6. W. van Zeist and J. A. H. Bakker-Heeres, “Evidence for linseed cultivation before 6000 bc,” Journal of Archaeological Science, vol. 2, no. 3, pp. 215–219, 1975. View at Publisher · View at Google Scholar · View at Scopus
  7. A. Diederichsen and K. Hammer, “Variation of cultivated flax (Linum usitatissimum L. subsp. usitatissimum) and its wild progenitor pale flax (subsp. angustifolium (Huds.) Thell.),” Genetic Resources and Crop Evolution, vol. 42, no. 3, pp. 263–272, 1995. View at Publisher · View at Google Scholar · View at Scopus
  8. D. Zohary and M. Hopf, Domestication of Plants in the Old World: The Origin and Spread of Cultivated Plants in West Asia, Europe, and the Nile Valley, Oxford University Press, Oxford, UK, 2000.
  9. I. A. Sisov, Flax, Selhosgiz, Leningrad, Russia, 1955.
  10. N. M. Cernomorskaja and A. K. Stankevic, “K voprosu o vnutryvidovoj klassifikacii lna obyknovennogo (Linum usitatissimum L.). To the problem of intraspecific classification of common flax (Linum usitatissimum L.),” Selekcija I Genetika Tehnicheskih Kultur, vol. 113, pp. 53–63, 1987. View at Google Scholar
  11. A. Diederichsen, “Ex situ collections of cultivated flax (Linum usitatissimum L.) and other species of the genus Linum L.,” Genetic Resources and Crop Evolution, vol. 54, no. 3, pp. 661–678, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. Y. Fu, G. Peterson, A. Diederichsen, and K. W. Richards, “RAPD analysis of genetic relationships of seven flax species in the genus Linum L,” Genetic Resources and Crop Evolution, vol. 49, no. 3, pp. 253–259, 2002. View at Publisher · View at Google Scholar · View at Scopus
  13. J. Vromans, Molecular genetic studies in flax (Linum usitatissimum L.) [Ph.D. thesis], Wageningen University, Wageningen, The Netherlands, 2006.
  14. O. V. Muravenko, O. Y. Yurkevich, N. L. Bolsheva et al., “Comparison of genomes of eight species of sections Linum and Adenolinum from the genus Linum based on chromosome banding, molecular markers and RAPD analysis,” Genetica, vol. 135, no. 2, pp. 245–255, 2009. View at Publisher · View at Google Scholar · View at Scopus
  15. Y. Fu and R. G. Allaby, “Phylogenetic network of Linum species as revealed by non-coding chloroplast DNA sequences,” Genetic Resources and Crop Evolution, vol. 57, no. 5, pp. 667–677, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. B. J. Soto-Cerda, H. U. Saavedra, C. N. Navarro, and P. M. Ortega, “Characterization of novel genic SSR markers in Linum usitatissimum (L.) and their transferability across eleven Linum species,” Electronic Journal of Biotechnology, vol. 14, no. 2, 2011. View at Publisher · View at Google Scholar · View at Scopus
  17. O. Y. Yurkevich, A. A. Naumenko-Svetlova, N. L. Bolsheva et al., “Investigation of genome polymorphism and seed coat anatomy of species of section Adenolinum from the genus Linum,” Genetic Resources and Crop Evolution, vol. 60, no. 2, pp. 661–676, 2013. View at Publisher · View at Google Scholar · View at Scopus
  18. J. L. Bennetzen, “Transposable element contributions to plant gene and genome evolution,” Plant Molecular Biology, vol. 42, no. 1, pp. 251–269, 2000. View at Publisher · View at Google Scholar · View at Scopus
  19. C. Feschotte and E. J. Pritham, “DNA transposons and the evolution of eukaryotic genomes,” Annual Review of Genetics, vol. 41, pp. 331–368, 2007. View at Publisher · View at Google Scholar · View at Scopus
  20. C. Feschotte, N. Jiang, and S. R. Wessler, “Plant transposable elements: where genetics meets genomics,” Nature Reviews Genetics, vol. 3, no. 5, pp. 329–341, 2002. View at Publisher · View at Google Scholar · View at Scopus
  21. P. S. Schnable, D. Ware, R. S. Fulton et al., “The B73 maize genome: complexity, diversity, and dynamics,” Science, vol. 326, no. 5956, pp. 1112–1115, 2009. View at Google Scholar
  22. R. Kalendar, A. J. Flavell, T. H. N. Ellis, T. Sjakste, C. Moisy, and A. H. Schulman, “Analysis of plant diversity with retrotransposon-based molecular markers,” Heredity, vol. 106, no. 4, pp. 520–530, 2011. View at Publisher · View at Google Scholar · View at Scopus
  23. R. Waugh, K. McLean, A. J. Flavell et al., “Genetic distribution of Bare-1-like retrotransposable elements in the barley genome revealed by sequence-specific amplification polymorphisms (S-SAP),” Molecular and General Genetics, vol. 253, no. 6, pp. 687–694, 1997. View at Publisher · View at Google Scholar · View at Scopus
  24. T. H. N. Ellis, S. J. Poyser, M. R. Knox, A. V. Vershinin, and M. J. Ambrose, “Polymorphism of insertion sites of Ty1-copia class retrotransposons and its use for linkage and diversity analysis in pea,” Molecular and General Genetics, vol. 260, no. 1, pp. 9–19, 1998. View at Publisher · View at Google Scholar · View at Scopus
  25. R. A. Queen, B. M. Gribbon, C. James, P. Jack, and A. J. Flavell, “Retrotransposon-based molecular markers for linkage and genetic diversity analysis in wheat,” Molecular Genetics and Genomics, vol. 271, no. 1, pp. 91–97, 2004. View at Publisher · View at Google Scholar · View at Scopus
  26. N. V. Melnikova, F. A. Konovalov, and A. M. Kudryavtsev, “Long terminal repeat retrotransposon Jeli provides multiple genetic markers for common wheat (Triticum aestivum),” Plant Genetic Resources: Characterisation and Utilisation, vol. 9, no. 2, pp. 163–165, 2011. View at Publisher · View at Google Scholar · View at Scopus
  27. H. Kim, S. Terakami, C. Nishitani et al., “Development of cultivar-specific DNA markers based on retrotransposon-based insertional polymorphism in Japanese pear,” Breeding Science, vol. 62, no. 1, pp. 53–62, 2012. View at Publisher · View at Google Scholar · View at Scopus
  28. S. R. Pearce, M. Knox, T. H. N. Ellis, A. J. Flavell, and A. Kumar, “Pea Ty1-copia group retrotransposons: transpositional activity and use as markers to study genetic diversity in Pisum,” Molecular and General Genetics, vol. 263, no. 6, pp. 898–907, 2000. View at Publisher · View at Google Scholar · View at Scopus
  29. A. V. Vershinin, T. R. Allnutt, M. R. Knox, M. J. Ambrose, and T. H. N. Ellis, “Transposable elements reveal the impact of introgression, rather than transposition, in Pisum diversity, evolution, and domestication,” Molecular Biology and Evolution, vol. 20, no. 12, pp. 2067–2075, 2003. View at Publisher · View at Google Scholar · View at Scopus
  30. A. M. Sanz, S. G. Gonzalez, N. H. Syed, M. J. Suso, C. C. Saldaña, and A. J. Flavell, “Genetic diversity analysis in Vicia species using retrotransposon-based SSAP markers,” Molecular Genetics and Genomics, vol. 278, no. 4, pp. 433–441, 2007. View at Publisher · View at Google Scholar · View at Scopus
  31. R. Kalendar, J. Tanskanen, W. Chang et al., “Cassandra retrotransposons carry independently transcribed 5S RNA,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 15, pp. 5833–5838, 2008. View at Publisher · View at Google Scholar · View at Scopus
  32. P. Smýkal, N. Bačová-Kerteszováč, R. Kalendar, J. Corander, A. H. Schulman, and M. Pavelek, “Genetic diversity of cultivated flax (Linum usitatissimum L.) germplasm assessed by retrotransposon-based markers,” Theoretical and Applied Genetics, vol. 122, no. 7, pp. 1385–1397, 2011. View at Publisher · View at Google Scholar · View at Scopus
  33. R. Ragupathy, R. Rathinavelu, and S. Cloutier, “Physical mapping and BAC-end sequence analysis provide initial insights into the flax (Linum usitatissimum L.) genome,” BMC Genomics, vol. 12, article 217, 2011. View at Publisher · View at Google Scholar · View at Scopus
  34. L. G. González and M. K. Deyholos, “Identification, characterization and distribution of transposable elements in the flax (Linum usitatissimum L.) genome,” BMC Genomics, vol. 13, no. 1, article 644, 2012. View at Publisher · View at Google Scholar · View at Scopus
  35. I. V. Nosova, O. Y. Semenova, T. E. Samatadze et al., “Investigation of karyotype structure and mapping of ribosomal genes on chromosomes of wild linum species by FISH,” Biologicheskie Membrany, vol. 22, no. 3, pp. 244–248, 2005. View at Google Scholar · View at Scopus
  36. N. L. Bolsheva, O. Y. Semenova, O. V. Muravenko, I. V. Nosova, K. V. Popov, and A. V. Zelenin, “Localization of telomere sequences in chromosomes of two flax species,” Biologicheskie Membrany, vol. 22, no. 3, pp. 227–231, 2005. View at Google Scholar · View at Scopus
  37. O. V. Muravenko, N. L. Bol'sheva, O. I. Iurkevich et al., “Karyogenomics of species of the genus Linum L,” Genetika, vol. 46, no. 10, pp. 1339–1342, 2010. View at Google Scholar · View at Scopus
  38. F. A. Konovalov, N. P. Goncharov, S. Goryunova, A. Shaturova, T. Proshlyakova, and A. Kudryavtsev, “Molecular markers based on LTR retrotransposons BARE-1 and Jeli uncover different strata of evolutionary relationships in diploid wheats,” Molecular Genetics and Genomics, vol. 283, no. 6, pp. 551–563, 2010. View at Publisher · View at Google Scholar · View at Scopus
  39. N. V. Melnikova, A. V. Kudryavtseva, A. S. Speranskaya et al., “The FaRE1 LTR-retrotransposon based SSAP markers reveal genetic polymorphism of strawberry (Fragaria x ananassa) cultivars,” Journal of Agricultural Science, vol. 4, no. 11, pp. 111–118, 2012. View at Google Scholar
  40. K. Edwards, C. Johnstone, and C. Thompson, “A simple and rapid method for the preparation of plant genomic DNA for PCR analysis,” Nucleic Acids Research, vol. 19, no. 6, p. 1349, 1991. View at Publisher · View at Google Scholar · View at Scopus
  41. L. R. Dice, “Measures of the amount of ecologic association between species,” Ecology, vol. 26, no. 3, pp. 297–302, 1945. View at Google Scholar
  42. D. H. Huson and D. Bryant, “Application of phylogenetic networks in evolutionary studies,” Molecular Biology and Evolution, vol. 23, no. 2, pp. 254–267, 2006. View at Publisher · View at Google Scholar · View at Scopus
  43. N. Saitou and M. Nei, “The neighbor-joining method: a new method for reconstructing phylogenetic trees.,” Molecular biology and evolution, vol. 4, no. 4, pp. 406–425, 1987. View at Google Scholar · View at Scopus
  44. S. Sveinsson, J. McDill, G. K. Wong et al., “Phylogenetic pinpointing of a paleopolyploidy event within the flax genus (Linum) using transcriptomics,” Annals of Botany, vol. 113, no. 5, pp. 753–761, 2014. View at Google Scholar
  45. A. P. Sokolovskaya and N. S. Probatova, “Chromosome numbers in the vascular plants from the Primorye territory, Kamchatka, region, Amur valley and Sakhalin,” Botanicheskii Zhurnal SSSR, vol. 70, no. 4, pp. 997–999, 1985. View at Google Scholar
  46. C. M. Rogers, “A further note on the relationships of the European Linum hologynum and the Australian species of Linum (Linaceae),” Plant Systematics and Evolution, vol. 147, no. 3-4, pp. 327–328, 1984. View at Publisher · View at Google Scholar · View at Scopus
  47. J. S. P. Heslop-Harrison and T. Schwarzacher, “Organisation of the plant genome in chromosomes,” Plant Journal, vol. 66, no. 1, pp. 18–33, 2011. View at Publisher · View at Google Scholar · View at Scopus