Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2014 (2014), Article ID 280497, 11 pages
http://dx.doi.org/10.1155/2014/280497
Research Article

Early Onset Intrauterine Growth Restriction in a Mouse Model of Gestational Hypercholesterolemia and Atherosclerosis

1Departamento de Nutrición, Diabetes y Metabolismo, Escuela de Medicina, Facultad de Medicina, Pontificia Universidad Católica de Chile, Marcoleta 367/Interior, 4° Piso, 8330024 Santiago, Chile
2Departamento de Gastroenterología, Escuela de Medicina, Facultad de Medicina, Pontificia Universidad Católica de Chile, Marcoleta 367/Interior, 4° Piso, 8330024 Santiago, Chile
3Departamento de Nefrología y Centro de Investigaciones Médicas, Escuela de Medicina, Facultad de Medicina, Pontificia Universidad Católica de Chile, Lira 44, 2° Piso, 8330024 Santiago, Chile
4Centro de Nutrición Molecular y Enfermedades Crónicas, Escuela de Medicina, Facultad de Medicina, Pontificia Universidad Católica de Chile, Avenida Bernardo O’Higgins 340, 8331150 Santiago, Chile

Received 31 March 2014; Revised 23 May 2014; Accepted 20 June 2014; Published 10 September 2014

Academic Editor: Luis Sobrevia

Copyright © 2014 Dolores Busso et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. J. P. Barker and P. M. Clark, “Fetal undernutrition and disease in later life,” Reviews of Reproduction, vol. 2, no. 2, pp. 105–112, 1997. View at Publisher · View at Google Scholar · View at Scopus
  2. C. E. Aiken and S. E. Ozanne, “Sex differences in developmental programming models,” Reproduction, vol. 145, no. 1, pp. R1–R13, 2013. View at Publisher · View at Google Scholar · View at Scopus
  3. A. J. Watkins and T. P. Fleming, “Blastocyst environment and its influence on offspring cardiovascular health: the heart of the matter,” Journal of Anatomy, vol. 215, no. 1, pp. 52–59, 2009. View at Publisher · View at Google Scholar · View at Scopus
  4. C. Napoli, F. P. D'Armiento, F. P. Mancini et al., “Fatty streak formation occurs in human fetal aortas and is greatly enhanced maternal, hypercholesterolemia. Intimal accumulation of low density lipoprotein and its oxidation precede monocyte recruitment into early atheroeclerotic lesions,” Journal of Clinical Investigation, vol. 100, no. 11, pp. 2680–2690, 1997. View at Publisher · View at Google Scholar · View at Scopus
  5. Y. Ikari, B. M. McManus, J. Kenyon, and S. M. Schwartz, “Neonatal intima formation in the human coronary artery,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 19, no. 9, pp. 2036–2040, 1999. View at Publisher · View at Google Scholar · View at Scopus
  6. A. Liguori, F. P. D'Armiento, A. Palagiano et al., “Effect of gestational hypercholesterolaemia on omental vasoreactivity, placental enzyme activity and transplacental passage of normal and oxidised fatty acids,” BJOG: An International Journal of Obstetrics and Gynaecology, vol. 114, no. 12, pp. 1547–1556, 2007. View at Publisher · View at Google Scholar · View at Scopus
  7. A. Leiva, C. Diez de Medina, R. Salsoso et al., “Maternal hypercholesterolemia in pregnancy associates with umbilical vein endothelial dysfunction: role of endothelial nitric oxide synthase and arginase II,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 33, no. 10, pp. 2444–2453, 2013. View at Publisher · View at Google Scholar · View at Scopus
  8. M. R. Skilton, J. S. A. Viikari, M. Juonala et al., “Fetal growth and preterm birth influence cardiovascular risk factors and arterial health in young adults: the cardiovascular risk in young finns study,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 31, no. 12, pp. 2975–2981, 2011. View at Publisher · View at Google Scholar · View at Scopus
  9. Z. Wang, Z. Huang, G. Lu, L. Lin, and M. Ferrari, “Hypoxia during pregnancy in rats leads to early morphological changes of atherosclerosis in adult offspring,” American Journal of Physiology—Heart and Circulatory Physiology, vol. 296, no. 5, pp. H1321–H1328, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. V. A. Cortes, D. Busso, P. Mardones et al., “Advances in the physiological and pathological implications of cholesterol,” Biological reviews of the Cambridge Philosophical Society, vol. 88, no. 4, pp. 825–843, 2013. View at Publisher · View at Google Scholar · View at Scopus
  11. C. Napoli, J. L. Witztum, F. Calara, F. de Nigris, and W. Palinski, “Maternal hypercholesterolemia enhances atherogenesis in normocholesterolemic rabbits, which is inhibited by antioxidant or lipid-lowering intervention during pregnancy: an experimental model of atherogenic mechanisms in human fetuses,” Circulation Research, vol. 87, no. 10, pp. 946–952, 2000. View at Publisher · View at Google Scholar · View at Scopus
  12. A. Montoudis, L. Simoneau, L. Brissette, J. Forest, R. Savard, and J. Lafond, “Impact of a cholesterol enriched diet on maternal and fetal plasma lipids and fetal deposition in pregnant rabbits,” Life Sciences, vol. 64, no. 26, pp. 2439–2450, 1999. View at Publisher · View at Google Scholar · View at Scopus
  13. O. Picone, P. Laigre, L. Fortun-Lamothe et al., “Hyperlipidic hypercholesterolemic diet in prepubertal rabbits affects gene expression in the embryo, restricts fetal growth and increases offspring susceptibility to obesity,” Theriogenology, vol. 75, no. 2, pp. 287–299, 2011. View at Publisher · View at Google Scholar · View at Scopus
  14. C. Napoli, F. de Nigris, J. S. Welch et al., “Maternal hypercholesterolemia during pregnancy promotes early atherogenesis in LDL receptor-deficient mice and alters aortic gene expression determined by microarray,” Circulation, vol. 105, no. 11, pp. 1360–1367, 2002. View at Publisher · View at Google Scholar · View at Scopus
  15. N. Goharkhay, E. Sbrana, P. K. Gamble et al., “Characterization of a murine model of fetal programming of atherosclerosis,” American Journal of Obstetrics and Gynecology, vol. 197, no. 4, pp. 416.e1–416.e5, 2007. View at Publisher · View at Google Scholar · View at Scopus
  16. G. S. Getz and C. A. Reardon, “Diet and murine atherosclerosis,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 26, no. 2, pp. 242–249, 2006. View at Google Scholar
  17. N. Goharkhay, E. H. Tamayo, H. Yin, G. D. V. Hankins, G. R. Saade, and M. Longo, “Maternal hypercholesterolemia leads to activation of endogenous cholesterol synthesis in the offspring,” The American Journal of Obstetrics and Gynecology, vol. 199, no. 3, pp. 273.e1–273.e6, 2008. View at Publisher · View at Google Scholar · View at Scopus
  18. K. K. S. Bhasin, A. van Nas, L. J. Martin, R. C. Davis, S. U. Devaskar, and A. J. Lusis, “Maternal low-protein diet or hypercholesterolemia reduces circulating essential amino acids and leads to intrauterine growth restriction,” Diabetes, vol. 58, no. 3, pp. 559–566, 2009. View at Publisher · View at Google Scholar · View at Scopus
  19. T. O. Scholl, X. Chen, M. Sims, and T. P. Stein, “Vitamin E: maternal concentrations are associated with fetal growth,” The American Journal of Clinical Nutrition, vol. 84, no. 6, pp. 1442–1448, 2006. View at Google Scholar · View at Scopus
  20. M. Saker, N. Soulimane Mokhtari, S. A. Merzouk, H. Merzouk, B. Belarbi, and M. Narce, “Oxidant and antioxidant status in mothers and their newborns according to birthweight,” European Journal of Obstetrics Gynecology and Reproductive Biology, vol. 141, no. 2, pp. 95–99, 2008. View at Publisher · View at Google Scholar · View at Scopus
  21. W. Palinski and C. Napoli, “The fetal origins of atherosclerosis: Maternal hypercholesterolemia, and cholesterol-lowering or antioxidant treatment during pregnancy influence in utero programming and postnatal susceptibility to atherogenesis,” FASEB Journal, vol. 16, no. 11, pp. 1348–1360, 2002. View at Publisher · View at Google Scholar · View at Scopus
  22. K. Hartvigsen, C. J. Binder, L. F. Hansen et al., “A diet-induced hypercholesterolemic murine model to study atherogenesis without obesity and metabolic syndrome,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 27, no. 4, pp. 878–885, 2007. View at Publisher · View at Google Scholar · View at Scopus
  23. M. R. Dilworth, L. C. Kusinski, B. C. Baker et al., “Defining fetal growth restriction in mice: a standardized and clinically relevant approach,” Placenta, vol. 32, no. 11, pp. 914–916, 2011. View at Publisher · View at Google Scholar · View at Scopus
  24. A. Jiménez, R. Fernández, N. Madrid-Bury et al., “Experimental demonstration that pre- and post-conceptional mechanisms influence sex ratio in mouse embryos,” Molecular Reproduction and Development, vol. 66, no. 2, pp. 162–165, 2003. View at Publisher · View at Google Scholar · View at Scopus
  25. C. C. Allain, L. S. Poon, C. S. G. Chan, W. Richmond, and P. C. Fu, “Enzymatic determination of total serum cholesterol,” Clinical Chemistry, vol. 20, no. 4, pp. 470–475, 1974. View at Google Scholar · View at Scopus
  26. C. L. Williams, J. L. Teeling, V. H. Perry, and T. P. Fleming, “Mouse maternal systemic inflammation at the zygote stage causes blunted cytokine responsiveness in lipopolysaccharide-challenged adult offspring,” BMC Biology, vol. 9, article 49, 2011. View at Publisher · View at Google Scholar · View at Scopus
  27. J. J. Eckert, R. Porter, A. J. Watkins et al., “Metabolic induction and early responses of mouse blastocyst developmental programming following maternal low protein diet affecting life-long health,” PLoS ONE, vol. 7, no. 12, Article ID e52791, 2012. View at Publisher · View at Google Scholar · View at Scopus
  28. K. M. Luzzo, Q. Wang, S. H. Purcell et al., “High fat diet induced developmental defects in the mouse: oocyte meiotic aneuploidy and fetal growth retardation/brain defects,” PLoS ONE, vol. 7, no. 11, Article ID e49217, 2012. View at Publisher · View at Google Scholar · View at Scopus
  29. A. J. Watkins, E. S. Lucas, A. Wilkins, F. R. A. Cagampang, and T. P. Fleming, “Maternal periconceptional and gestational low protein diet affects mouse offspring growth, cardiovascular and adipose phenotype at 1 year of age,” PLoS ONE, vol. 6, no. 12, Article ID e28745, 2011. View at Publisher · View at Google Scholar · View at Scopus
  30. W. Y. Kwong, D. J. Miller, A. P. Wilkins et al., “Maternal low protein diet restricted to the preimplantation period induces a gender-specific change on hepatic gene expression in rat fetuses,” Molecular Reproduction and Development, vol. 74, no. 1, pp. 48–56, 2007. View at Publisher · View at Google Scholar · View at Scopus
  31. N. Igosheva, A. Y. Abramov, L. Poston et al., “Maternal diet-induced obesity alters mitochondrial activity and redox status in mouse oocytes and zygotes,” PLoS ONE, vol. 5, no. 4, Article ID e10074, 2010. View at Publisher · View at Google Scholar · View at Scopus
  32. W. Y. Kwong, A. E. Wild, P. Roberts, A. C. Willis, and T. P. Fleming, “Maternal undernutrition during the preimplantation period of rat development causes blastocyst abnormalities and programming of postnatal hypertension,” Development, vol. 127, no. 19, pp. 4195–4202, 2000. View at Google Scholar · View at Scopus
  33. T. Forsén, J. G. Eriksson, J. Tuomilehto, C. Osmond, and D. J. P. Barker, “Growth in utero and during childhood among women who develop coronary heart disease: longitudinal study,” British Medical Journal, vol. 319, no. 7222, pp. 1403–1407, 1999. View at Publisher · View at Google Scholar · View at Scopus
  34. J. G. Eriksson, E. Kajantie, C. Osmond, K. Thornburg, and D. J. P. Barker, “Boys live dangerously in the womb,” The American Journal of Human Biology, vol. 22, no. 3, pp. 330–335, 2010. View at Publisher · View at Google Scholar · View at Scopus
  35. F. Lu, E. Bytautiene, E. Tamayo et al., “Gender-specific effect of overexpression of sFlt-1 in pregnant mice on fetal programming of blood pressure in the offspring later in life,” The American Journal of Obstetrics and Gynecology, vol. 197, no. 4, pp. 418.e1–418.e5, 2007. View at Publisher · View at Google Scholar · View at Scopus
  36. J. S. Gilbert, S. P. Ford, A. L. Lang et al., “Nutrient restriction impairs nephrogenesis in a gender-specific manner in the ovine fetus,” Pediatric Research, vol. 61, no. 1, pp. 42–47, 2007. View at Publisher · View at Google Scholar · View at Scopus
  37. D. O'Regan, C. J. Kenyon, J. R. Seckl, and M. C. Holmes, “Glucocorticoid exposure in late gestation in the rat permanently programs gender-specific differences in adult cardiovascular and metabolic physiology,” The American Journal of Physiology—Endocrinology and Metabolism, vol. 287, no. 5, pp. E863–E870, 2004. View at Publisher · View at Google Scholar · View at Scopus
  38. L. E. Vos, A. Oren, M. L. Bots, W. H. M. Gorissen, D. E. Grobbee, and C. S. P. M. Uiterwaal, “Birth size and coronary heart disease risk score in young adulthood. The atherosclerosis risk in young adults (ARYA) study,” European Journal of Epidemiology, vol. 21, no. 1, pp. 33–38, 2006. View at Publisher · View at Google Scholar · View at Scopus
  39. U. Pecks, M. Brieger, B. Schiessl et al., “Maternal and fetal cord blood lipids in intrauterine growth restriction,” Journal of Perinatal Medicine, vol. 40, no. 3, pp. 287–296, 2012. View at Publisher · View at Google Scholar · View at Scopus
  40. C. Napoli, C. K. Glass, J. L. Witztum, R. Deutsch, F. P. D'Armiento, and W. Palinski, “Influence of maternal hypercholesterolaemia during pregnancy on progression of early atherosclerotic lesions in childhood: Fate of Early Lesions in Children (FELIC) study,” The Lancet, vol. 354, no. 9186, pp. 1234–1241, 1999. View at Publisher · View at Google Scholar · View at Scopus
  41. U. Pecks, W. Rath, R. Caspers et al., “Oxidatively modified LDL particles in the human placenta in early and late onset intrauterine growth restriction,” Placenta, vol. 34, no. 12, pp. 1142–1149, 2013. View at Publisher · View at Google Scholar
  42. J. L. Stanley, I. J. Andersson, C. J. Hirt et al., “Effect of the anti-oxidant tempol on fetal growth in a mouse model of fetal growth restriction,” Biology of Reproduction, vol. 87, no. 1, article 25, pp. 1–8, 2012. View at Publisher · View at Google Scholar · View at Scopus
  43. S. Valastyan, V. Thakur, A. Johnson, K. Kumar, and D. Manor, “Novel transcriptional activities of vitamin E: inhibition of cholesterol biosynthesis,” Biochemistry, vol. 47, no. 2, pp. 744–752, 2008. View at Publisher · View at Google Scholar · View at Scopus
  44. T. Watkins, P. Lenz, A. Gapor, M. Struck, A. Tomeo, and M. Bierenbaum, “γ-Tocotrienol as a hypocholesterolemic and antioxidant agent in rats fed atherogenic diets,” Lipids, vol. 28, no. 12, pp. 1113–1118, 1993. View at Publisher · View at Google Scholar · View at Scopus
  45. R. J. Nicolosi, C. W. Lawton, and T. A. Wilson, “Vitamin E reduces plasma low density lipoprotein cholesterol, LDL oxidation, and early aortic atherosclerosis compared with black tea in hypercholesterolemic hamsters,” Nutrition Research, vol. 19, no. 8, pp. 1201–1214, 1999. View at Publisher · View at Google Scholar · View at Scopus
  46. J. Zingg and A. Azzi, “Non-antioxidant activities of vitamin E,” Current Medicinal Chemistry, vol. 11, no. 9, pp. 1113–1133, 2004. View at Publisher · View at Google Scholar · View at Scopus
  47. D. Wu, L. Liu, M. Meydani, and S. N. Meydani, “Vitamin E increases production of vasodilator prostanoids in human aortic endothelial cells through opposing effects on cyclooxygenase-2 and phospholipase A2,” Journal of Nutrition, vol. 135, no. 8, pp. 1847–1853, 2005. View at Google Scholar · View at Scopus
  48. K. Tran and A. C. Chan, “R,R,R-α-tocopherol potentiates prostacyclin release in human endothelial cells. Evidence for structural specificity of the tocopherol molecule,” Biochimica et Biophysica Acta—Lipids and Lipid Metabolism, vol. 1043, no. 2, pp. 189–197, 1990. View at Publisher · View at Google Scholar · View at Scopus
  49. H. D. Sesso, J. E. Buring, W. G. Christen et al., “Vitamins E and C in the prevention of cardiovascular disease in men: the physicians' health study II randomized controlled trial,” Journal of the American Medical Association, vol. 300, no. 18, pp. 2123–2133, 2008. View at Publisher · View at Google Scholar · View at Scopus
  50. M. Shiomi, T. Koike, and T. Ishida, “Genetically modified animal models for lipoprotein research,” in Lipoproteins—Role in Health and Diseases, S. Frank and G. Kostner, Eds., chapter 22, InTech, 2012. View at Publisher · View at Google Scholar
  51. J. L. Goldstein, T. Kita, and M. S. Brown, “Defective lipoprotein receptors and atherosclerosis. Lessons from an animal counterpart of familial hypercholesterolemia,” The New England Journal of Medicine, vol. 309, no. 5, pp. 288–296, 1983. View at Publisher · View at Google Scholar · View at Scopus
  52. S. Ishibashi, M. S. Brown, J. L. Goldstein, R. D. Gerard, R. E. Hammer, and J. Herz, “Hypercholesterolemia in low density lipoprotein receptor knockout mice and its reversal by adenovirus-mediated gene delivery,” Journal of Clinical Investigation, vol. 92, no. 2, pp. 883–893, 1993. View at Publisher · View at Google Scholar · View at Scopus
  53. A. H. Lichtman, S. K. Clinton, K. Iiyama, P. W. Connelly, P. Libby, and M. I. Cybulsky, “Hyperlipidemia and atherosclerotic lesion development in LDL receptor- deficient mice fed defined semipurified diets with and without cholate,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 19, no. 8, pp. 1938–1944, 1999. View at Publisher · View at Google Scholar · View at Scopus
  54. G. Papacleovoulou, S. Abu-Hayyeh, E. Nikolopoulou et al., “Maternal cholestasis during pregnancy programs metabolic disease in offspring,” Journal of Clinical Investigation, vol. 123, no. 7, pp. 3172–3181, 2013. View at Publisher · View at Google Scholar · View at Scopus