Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2014, Article ID 287896, 10 pages
http://dx.doi.org/10.1155/2014/287896
Research Article

Chitosan Feasibility to Retain Retinal Stem Cell Phenotype and Slow Proliferation for Retinal Transplantation

1Instituto Universitario de Oftalmobiología Aplicada (IOBA), Universidad de Valladolid, Campus Miguel Delibes Paseo de Belen 17, 47011 Valladolid, Spain
2Centro en Red de Medicina Regenerativa y Terapia Celular de Castilla y León, 47011 Valladolid, Spain
3Department of Chemical and Biomolecular Engineering, University of Cantabria, 39005 Santander, Spain
4Instituto de Nanociencia de Aragon (INA), Universidad de Zaragoza, 50018 Zaragoza, Spain

Received 2 April 2013; Revised 17 December 2013; Accepted 19 December 2013; Published 2 February 2014

Academic Editor: Ulrich Kneser

Copyright © 2014 Girish K. Srivastava et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. D. Weiland, A. K. Cho, and M. S. Humayun, “Retinal prostheses: current clinical results and future needs,” Ophthalmology, vol. 118, no. 11, pp. 2227–2237, 2011. View at Publisher · View at Google Scholar · View at Scopus
  2. J. Z. Nowak, “Age-related macular degeneration (AMD): pathogenesis and therapy,” Pharmacological Reports, vol. 58, no. 3, pp. 353–363, 2006. View at Google Scholar · View at Scopus
  3. S. Binder, B. V. Stanzel, I. Krebs, and C. Glittenberg, “Transplantation of the RPE in AMD,” Progress in Retinal and Eye Research, vol. 26, no. 5, pp. 516–554, 2007. View at Publisher · View at Google Scholar · View at Scopus
  4. J. Doorn, G. Moll, K. Le Blanc, C. van Blitterswijk, and J. de Boer, “Therapeutic applications of mesenchymal stromal cells: paracrine effects and potential improvements,” Tissue Engineering B, vol. 18, no. 2, pp. 101–115, 2012. View at Publisher · View at Google Scholar · View at Scopus
  5. B. Parekkadan and J. M. Milwid, “Mesenchymal stem cells as therapeutics,” Annual Review of Biomedical Engineering, vol. 12, pp. 87–117, 2010. View at Publisher · View at Google Scholar · View at Scopus
  6. I. Ahmad, L. Tang, and H. Pham, “Identification of neural progenitors in the adult mammalian eye,” Biochemical and Biophysical Research Communications, vol. 270, no. 2, pp. 517–521, 2000. View at Publisher · View at Google Scholar · View at Scopus
  7. B. L. K. Coles, B. Angénieux, T. Inoue et al., “Facile isolation and the characterization of human retinal stem cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 44, pp. 15772–15777, 2004. View at Publisher · View at Google Scholar · View at Scopus
  8. V. Tropepe, B. L. K. Coles, B. J. Chiasson et al., “Retinal stem cells in the adult mammalian eye,” Science, vol. 287, no. 5460, pp. 2032–2036, 2000. View at Publisher · View at Google Scholar · View at Scopus
  9. P. Gu, L. J. Harwood, X. Zhang, M. Wylie, W. J. Curry, and T. Cogliati, “Isolation of retinal progenitor and stem cells from the porcine eye,” Molecular Vision, vol. 13, pp. 1045–1057, 2007. View at Google Scholar · View at Scopus
  10. J. Guduric-Fuchs, W. Chen, H. Price, D. B. Archer, and T. Cogliati, “RPE and neuronal differentiation of allotransplantated porcine ciliary epithelium-derived cells,” Molecular Vision, vol. 17, pp. 2580–2595, 2011. View at Google Scholar · View at Scopus
  11. M. Tomita, E. Lavik, H. Klassen, T. Zahir, R. Langer, and M. J. Young, “Biodegradable polymer composite grafts promote the survival and differentiation of retinal progenitor cells,” Stem Cells, vol. 23, no. 10, pp. 1579–1588, 2005. View at Publisher · View at Google Scholar · View at Scopus
  12. M. D. Tibbetts, M. A. Samuel, T. S. Chang, and A. C. Ho, “Stem cell therapy for retinal disease,” Current Opinion in Ophthalmology, vol. 23, no. 3, pp. 226–234, 2012. View at Publisher · View at Google Scholar · View at Scopus
  13. S. D. Schwartz, J.-P. Hubschman, G. Heilwell et al., “Embryonic stem cell trials for macular degeneration: a preliminary report,” The Lancet, vol. 379, no. 9817, pp. 713–720, 2012. View at Publisher · View at Google Scholar · View at Scopus
  14. A. J. Treharne, M. C. Grossel, A. J. Lotery, and H. A. Thomson, “The chemistry of retinal transplantation: the influence of polymer scaffold properties on retinal cell adhesion and control,” British Journal of Ophthalmology, vol. 95, no. 6, pp. 768–773, 2011. View at Publisher · View at Google Scholar · View at Scopus
  15. S. R. Hynes and E. B. Lavik, “A tissue-engineered approach towards retinal repair: scaffolds for cell transplantation to the subretinal space,” Graefe's Archive for Clinical and Experimental Ophthalmology, vol. 248, no. 6, pp. 763–778, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. K. Saito, T. Fujieda, and H. Yoshioka, “Feasibility of simple chitosan sheet as drug delivery carrier,” European Journal of Pharmaceutics and Biopharmaceutics, vol. 64, no. 2, pp. 161–166, 2006. View at Publisher · View at Google Scholar · View at Scopus
  17. H. Yang, R. Wang, Q. Gu, and X. Zhang, “Feasibility study of chitosan as intravitreous tamponade material,” Graefe's Archive for Clinical and Experimental Ophthalmology, vol. 246, no. 8, pp. 1097–1105, 2008. View at Publisher · View at Google Scholar · View at Scopus
  18. B. Krajewska, “Membrane-based processes performed with use of chitin/chitosan materials,” Separation and Purification Technology, vol. 41, no. 3, pp. 305–312, 2005. View at Publisher · View at Google Scholar · View at Scopus
  19. B. Ghosh and M. W. Urban, “Self-repairing oxetane-substituted chitosan polyurethane networks,” Science, vol. 323, no. 5920, pp. 1458–1460, 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. H. Chen, X. Fan, J. Xia et al., “Electrospun chitosan-graft-poly (ε-caprolactone)/poly (ε-caprolactone) nanofibrous scaffolds for retinal tissue engineering,” International Journal of Nanomedicine, vol. 6, pp. 453–461, 2011. View at Google Scholar · View at Scopus
  21. R. S. Tiǧli, S. Ghosh, M. M. Laha et al., “Comparative chondrogenesis of human cell sources in 3D scaffolds,” Journal of Tissue Engineering and Regenerative Medicine, vol. 3, no. 5, pp. 348–360, 2009. View at Publisher · View at Google Scholar · View at Scopus
  22. K. A. Athanasiou, G. G. Niederauer, and C. M. Agrawal, “Sterilization, toxicity, biocompatibility and clinical applications of polylactic acid/polyglycolic acid copolymers,” Biomaterials, vol. 17, no. 2, pp. 93–102, 1996. View at Publisher · View at Google Scholar · View at Scopus
  23. H. Suh, “Recent advances in biomaterials,” Yonsei Medical Journal, vol. 39, no. 2, pp. 87–96, 1998. View at Google Scholar · View at Scopus
  24. G. K. Srivastava, L. Martín, A. K. Singh et al., “Elastin-like recombinamers as substrates for retinal pigment epithelial cell growth,” Journal of Biomedical Materials Research A, vol. 97, no. 3, pp. 243–250, 2011. View at Publisher · View at Google Scholar · View at Scopus
  25. H. Klassen, K. Warfvinge, P. H. Schwartz et al., “Isolation of progenitor cells from GFP-transgenic pigs and transplantation to the retina of allorecipients,” Cloning and Stem Cells, vol. 10, no. 3, pp. 391–402, 2008. View at Publisher · View at Google Scholar · View at Scopus
  26. I. Fernandez-Bueno, J. C. Pastor, M. J. Gayoso, I. Alcalde, and M. T. Garcia, “Müller and macrophage-like cell interactions in an organotypic culture of porcine neuroretina,” Molecular Vision, vol. 14, pp. 2148–2156, 2008. View at Google Scholar · View at Scopus
  27. S. A. Cicero, D. Johnson, S. Reyntjens et al., “Cells previously identified as retinal stem cells are pigmented ciliary epithelial cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 16, pp. 6685–6690, 2009. View at Publisher · View at Google Scholar · View at Scopus
  28. S. Gualdoni, M. Baron, J. Lakowski et al., “Adult ciliary epithelial cells, previously identified as retinal stem cells with potential for retinal repair, fail to differentiate into new rod photoreceptors,” Stem Cells, vol. 28, no. 6, pp. 1048–1059, 2010. View at Publisher · View at Google Scholar · View at Scopus
  29. K. Shubham and R. Mishra, “Pax6 interacts with SPARC and TGF-beta in murine eyes,” Molecular Vision, vol. 18, pp. 951–956, 2012. View at Google Scholar
  30. S. Redenti, W. L. Neeley, S. Rompani et al., “Engineering retinal progenitor cell and scrollable poly(glycerol-sebacate) composites for expansion and subretinal transplantation,” Biomaterials, vol. 30, no. 20, pp. 3405–3414, 2009. View at Publisher · View at Google Scholar · View at Scopus