Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2014, Article ID 290619, 8 pages
http://dx.doi.org/10.1155/2014/290619
Clinical Study

Evaluation of Corneal Biomechanical Properties Modification after Small Incision Lenticule Extraction Using Scheimpflug-Based Noncontact Tonometer

1Ophthalmic Clinic, University “G d’Annunzio” of Chieti-Pescara, Via dei Vestini, 66100 Chieti, Italy
2Ophthalmic Clinic, Campus Biomedico, University of Rome, 00185 Rome, Italy

Received 8 April 2014; Accepted 7 August 2014; Published 31 August 2014

Academic Editor: Ciro Costagliola

Copyright © 2014 Leonardo Mastropasqua et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. W. J. Dupps Jr. and S. E. Wilson, “Biomechanics and wound healing in the cornea,” Experimental Eye Research, vol. 83, no. 4, pp. 709–720, 2006. View at Publisher · View at Google Scholar · View at Scopus
  2. D. A. Luce, “Determining in vivo biomechanical properties of the cornea with an ocular response analyzer,” Journal of Cataract & Refractive Surgery, vol. 31, no. 1, pp. 156–162, 2005. View at Publisher · View at Google Scholar · View at Scopus
  3. D. Ortiz, D. Piñero, M. H. Shabayek, F. Arnalich-Montiel, and J. L. Alió, “Corneal biomechanical properties in normal, post-laser in situ keratomileusis, and keratoconic eyes,” Journal of Cataract and Refractive Surgery, vol. 33, no. 8, pp. 1371–1375, 2007. View at Publisher · View at Google Scholar · View at Scopus
  4. J. S. Pepose, S. K. Feigenbaum, M. A. Qazi, J. P. Sanderson, and C. J. Roberts, “Changes in corneal biomechanics and intraocular pressure following LASIK using static, dynamic, and noncontact tonometry,” American Journal of Ophthalmology, vol. 143, no. 1, pp. 39–47, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. C. Kirwan and M. O'Keefe, “Corneal hysteresis using the Reichert ocular response analyser: findings pre- and post-LASIK and LASEK,” Acta Ophthalmologica, vol. 86, no. 2, pp. 215–218, 2008. View at Publisher · View at Google Scholar · View at Scopus
  6. L. Reznicek, D. Muth, A. Kampik, A. S. Neubauer, and C. Hirneiss, “Evaluation of a novel Scheimpflug-based non-contact tonometer in healthy subjects and patients with ocular hypertension and glaucoma,” British Journal of Ophthalmology, vol. 97, no. 11, pp. 1410–1414, 2013. View at Publisher · View at Google Scholar
  7. G. Nemeth, Z. Hassan, A. Csutak, E. Szalai, A. Berta, and L. Modis Jr., “Repeatability of ocular biomechanical data measurements with a scheimpflug-based noncontact device on normal corneas,” Journal of Refractive Surgery, vol. 29, no. 8, pp. 558–563, 2013. View at Publisher · View at Google Scholar · View at Scopus
  8. Y. Hon and A. K. C. Lam, “Corneal deformation measurement using Scheimpflug noncontact tonometry,” Optometry and Vision Science, vol. 90, no. 1, pp. 1–8, 2013. View at Publisher · View at Google Scholar · View at Scopus
  9. J. Hong, J. Xu, A. Wei et al., “A new tonometer—the corvis ST tonometer: clinical comparison with noncontact and goldmann applanation tonometers,” Investigative Ophthalmology and Visual Science, vol. 54, no. 1, pp. 659–665, 2013. View at Publisher · View at Google Scholar · View at Scopus
  10. W. Sekundo, K. Kunert, C. Russmann et al., “First efficacy and safety study of femtosecond lenticule extraction for the correction of myopia: six-month results,” Journal of Cataract & Refractive Surgery, vol. 34, no. 9, pp. 1513–1520, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. M. Blum, K. Kunert, M. Schröder, and W. Sekundo, “Femtosecond lenticule extraction for the correction of myopia: preliminary 6-month results,” Graefe's Archive for Clinical and Experimental Ophthalmology, vol. 248, no. 7, pp. 1019–1027, 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. A. H. Vestergaard, K. T. Grønbech, J. Grauslund, A. R. Ivarsen, and J. Ø. Hjortdal, “Subbasal nerve morphology, corneal sensation, and tear film evaluation after refractive femtosecond laser lenticule extraction,” Graefe’s Archive for Clinical and Experimental Ophthalmology, vol. 251, no. 11, pp. 2591–2600, 2013. View at Google Scholar
  13. R. Ambrósio Jr., T. Tervo, and S. E. Wilson, “LASIK-associated dry eye and neurotrophic epitheliopathy: pathophysiology and strategies for prevention and treatment,” Journal of Refractive Surgery, vol. 24, no. 4, pp. 396–407, 2008. View at Google Scholar · View at Scopus
  14. S. E. Wilson, “Laser in situ keratomileusis-induced (presumed) neurotrophic epitheliopathy,” Ophthalmology, vol. 108, no. 6, pp. 1082–1087, 2001. View at Publisher · View at Google Scholar · View at Scopus
  15. D. T. Vroman, H. P. Sandoval, L. E. Fernández de Castro, T. J. Kasper, M. P. Holzer, and K. D. Solomon, “Effect of hinge location on corneal sensation and dry eye after laser in situ keratomileusis for myopia,” Journal of Cataract and Refractive Surgery, vol. 31, no. 10, pp. 1881–1887, 2005. View at Publisher · View at Google Scholar · View at Scopus
  16. H. K. Lee, K. S. Lee, H. C. Kim, S. H. Lee, and E. K. Kim, “Nerve growth factor concentration and implications in photorefractive keratectomy vs laser in situ keratomileusis,” The American Journal of Ophthalmology, vol. 139, no. 6, pp. 965–971, 2005. View at Publisher · View at Google Scholar · View at Scopus
  17. E. Y. W. Yu, A. Leung, S. Rao, and D. S. C. Lam, “Effect of laser in situ keratomileusis on tear stability,” Ophthalmology, vol. 107, no. 12, pp. 2131–2135, 2000. View at Publisher · View at Google Scholar · View at Scopus
  18. I. Ratkay-Traub, T. Juhasz, C. Horvath et al., “Ultra-short pulse (femtosecond) laser surgery: initial use in LASIK flap creation,” Ophthalmology Clinics of North America, vol. 14, no. 2, pp. 347–355, 2001. View at Google Scholar · View at Scopus
  19. S. Wei and Y. Wang, “Comparison of corneal sensitivity between FS-LASIK and femtosecond lenticule extraction (ReLEx flex) or small-incision lenticule extraction (ReLEx smile) for myopic eyes,” Graefe's Archive for Clinical and Experimental Ophthalmology, vol. 251, no. 6, pp. 1645–1654, 2013. View at Publisher · View at Google Scholar · View at Scopus
  20. W. Sekundo, K. S. Kunert, and M. Blum, “Small incision corneal refractive surgery using the small incision lenticule extraction (SMILE) procedure for the correction of myopia and myopic astigmatism: results of a 6 month prospective study,” British Journal of Ophthalmology, vol. 95, no. 3, pp. 335–339, 2011. View at Publisher · View at Google Scholar · View at Scopus
  21. R. Shah, S. Shah, and S. Sengupta, “Results of small incision lenticule extraction: all-in-one femtosecond laser refractive surgery,” Journal of Cataract and Refractive Surgery, vol. 37, no. 1, pp. 127–137, 2011. View at Publisher · View at Google Scholar · View at Scopus
  22. A. Vestergaard, A. R. Ivarsen, S. Asp, and J. Ø. Hjortdal, “Small-incision lenticule extraction for moderate to high myopia: predictability, safety, and patient satisfaction,” Journal of Cataract and Refractive Surgery, vol. 38, no. 11, pp. 2003–2010, 2012. View at Publisher · View at Google Scholar · View at Scopus
  23. Z. Hassan, L. Modis Jr., E. Szalai, A. Berta, and G. Nemeth, “Examination of ocular biomechanics with a new Scheimpflug technology after corneal refractive surgery,” Contact Lens & Anterior Eye, vol. 37, no. 5, pp. 337–341, 2014. View at Publisher · View at Google Scholar
  24. D. Z. Reinstein, T. J. Archer, and J. B. Randleman, “Mathematical model to compare the relative tensile strength of the cornea after PRK, LASIK, and small incision lenticule extraction,” Journal of Refractive Surgery, vol. 29, no. 7, pp. 454–460, 2013. View at Google Scholar
  25. J. O. Hjortdal, A. H. Vestergaard, A. Ivarsen, S. Ragunathan, and S. Asp, “Predictors for the outcome of small-incision lenticule extraction for myopia,” Journal of Refractive Surgery, vol. 28, no. 12, pp. 865–871, 2012. View at Publisher · View at Google Scholar · View at Scopus
  26. M. Rosman, R. C. Hall, C. Chan et al., “Comparison of efficacy and safety of laser in situ keratomileusis using 2 femtosecond laser platforms in contralateral eyes,” Journal of Cataract and Refractive Surgery, vol. 39, no. 7, pp. 1066–1073, 2013. View at Publisher · View at Google Scholar
  27. BF. Valbon, R. Ambrósio Jr., B. M. Fontes, and M. R. Alves, “Effects of age on corneal deformation by non-contact tonometry integrated with an ultra-high-speed (UHS) Scheimpflug camera,” Arquivos Brasileiros de Oftalmologia, vol. 76, no. 4, pp. 229–232, 2013. View at Google Scholar
  28. D. T. Azar, J.-H. Chang, and K. Y. Han, “Wound healing after keratorefractive surgery: review of biological and optical considerations,” Cornea, vol. 31, supplement 1, pp. S9–S19, 2012. View at Publisher · View at Google Scholar · View at Scopus
  29. M. R. F. D. Bryant, M. Campos, and P. J. McDonnell, “Finite element analysis of corneal topographic changes after excimer laser phototherapeutic keratectomy,” Investigative Ophthalmology and Vision Science, vol. 31, p. 804, 1993. View at Google Scholar
  30. J. L. Güell, F. Velasco, C. Roberts, M. T. Sisquella, and A. Mahmoud, “Corneal flap thickness and topography changes induced by flap creation during laser in situ keratomileusis,” Journal of Cataract and Refractive Surgery, vol. 31, no. 1, pp. 115–119, 2005. View at Publisher · View at Google Scholar · View at Scopus
  31. I. G. Pallikaris, G. D. Kymionis, S. I. Panagopoulou, C. S. Siganos, M. A. Theodorakis, and A. I. Pallikaris, “Induced optical aberrations following formation of a laser in situ keratomileusis flap,” Journal of Cataract and Refractive Surgery, vol. 28, no. 10, pp. 1737–1741, 2002. View at Publisher · View at Google Scholar · View at Scopus
  32. P. S. Binder, “Ectasia after laser in situ keratomileusis,” Journal of Cataract and Refractive Surgery, vol. 29, no. 12, pp. 2419–2429, 2003. View at Publisher · View at Google Scholar · View at Scopus
  33. M. G. Tatar, F. A. Kantarci, A. Yildirim et al., “Risk factors in post-LASIK corneal ectasia,” Journal of Ophthalmology, vol. 2014, Article ID 204191, 4 pages, 2014. View at Publisher · View at Google Scholar
  34. A. Agca, E. B. Ozgurhan, A. Demirok et al., “Comparison of corneal hysteresis and corneal resistance factor after small incision lenticule extractionand femtosecond laser-assisted LASIK: a prospective fellow eye study,” Contact Lens and Anterior Eye, vol. 37, no. 2, pp. 77–80, 2014. View at Google Scholar
  35. T. Huseynova, G. O. Waring IV, C. Roberts, R. R. Krueger, and M. Tomita, “Corneal biomechanics as a function of intraocular pressure and pachymetry by dynamic infrared signal and scheimpflug imaging analysis in normal eyes,” American Journal of Ophthalmology, vol. 157, no. 4, pp. 885–893, 2014. View at Publisher · View at Google Scholar
  36. Z. Dong, X. Zhou, J. Wu et al., “Small incision lenticule extraction (SMILE) and femtosecond laser LASIK: comparison of corneal wound healing and inflammation,” British Journal of Ophthalmology, vol. 98, no. 2, pp. 263–269, 2014. View at Publisher · View at Google Scholar