Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2014 (2014), Article ID 296472, 9 pages
Research Article

Pentachlorophenol Degradation by Janibacter sp., a New Actinobacterium Isolated from Saline Sediment of Arid Land

1Université Tunis El Manar, Faculté des Sciences de Tunis (FST), LR03ES03 Laboratoire de Microorganisme et Biomolécules Actives, Campus Universitaire, 2092 Tunis, Tunisia
2Laboratoire de Traitement et Recyclage des Eaux, Centre des Recherches et Technologie des Eaux (CERTE), Technopôle Borj-Cédria, B.P. 273, 8020 Soliman, Tunisia
3Université de Manouba, Institut Supérieur de Biotechnologie de Sidi Thabet, LR11ES31 Laboratoire de Biotechnologie et Valorization des Bio-Geo Resources, Biotechpole de Sidi Thabet, 2020 Ariana, Tunisia

Received 1 May 2014; Accepted 17 August 2014; Published 17 September 2014

Academic Editor: George Tsiamis

Copyright © 2014 Amel Khessairi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


Many pentachlorophenol- (PCP-) contaminated environments are characterized by low or elevated temperatures, acidic or alkaline pH, and high salt concentrations. PCP-degrading microorganisms, adapted to grow and prosper in these environments, play an important role in the biological treatment of polluted extreme habitats. A PCP-degrading bacterium was isolated and characterized from arid and saline soil in southern Tunisia and was enriched in mineral salts medium supplemented with PCP as source of carbon and energy. Based on 16S rRNA coding gene sequence analysis, the strain FAS23 was identified as Janibacter sp. As revealed by high performance liquid chromatography (HPLC) analysis, FAS23 strain was found to be efficient for PCP removal in the presence of 1% of glucose. The conditions of growth and PCP removal by FAS23 strain were found to be optimal in neutral pH and at a temperature of 30°C. Moreover, this strain was found to be halotolerant at a range of 1–10% of NaCl and able to degrade PCP at a concentration up to 300 mg/L, while the addition of nonionic surfactant (Tween 80) enhanced the PCP removal capacity.