Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2014, Article ID 309631, 9 pages
http://dx.doi.org/10.1155/2014/309631
Research Article

Phytoremediation Potential of Maná-Cubiu (Solanum sessiliflorum Dunal) for the Deleterious Effects of Methylmercury on the Reproductive System of Rats

1Department of Morphology, Institute of Biosciences, Univ Estadual Paulista-UNESP, Distrito de Rubião Junior s/nº, 18618-970 Botucatu, SP, Brazil
2Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Avenida do Café s/nº, 14040-903 Ribeirão Preto, SP, Brazil

Received 18 November 2013; Revised 11 February 2014; Accepted 11 February 2014; Published 19 March 2014

Academic Editor: Susana Viegas

Copyright © 2014 Raquel Frenedoso da Silva et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. F. Zahir, S. J. Rizwi, S. K. Haq, and R. H. Khan, “Low dose mercury toxicity and human health,” Environmental Toxicology and Pharmacology, vol. 20, no. 2, pp. 351–360, 2005. View at Publisher · View at Google Scholar · View at Scopus
  2. M. A. Boujbiha, K. Hamden, F. Guermazi et al., “Testicular toxicity in mercuric chloride treated rats: association with oxidative stress,” Reproductive Toxicology, vol. 28, no. 1, pp. 81–89, 2009. View at Publisher · View at Google Scholar · View at Scopus
  3. F. M. M. Morel, A. M. L. Kraepiel, and M. Amyot, “The chemical cycle and bioaccumulation of mercury,” Annual Review of Ecology and Systematics, vol. 29, pp. 543–566, 1998. View at Publisher · View at Google Scholar · View at Scopus
  4. S. Ceccatelli, E. Daré, and M. Moors, “Methylmercury-induced neurotoxicity and apoptosis,” Chemico-Biological Interactions, vol. 188, no. 2, pp. 301–308, 2010. View at Publisher · View at Google Scholar · View at Scopus
  5. G. R. M. Barcelos, D. Grotto, J. M. Serpeloni et al., “Protective properties of quercetin against DNA damage and oxidative stress induced by methylmercury in rats,” Archives of Toxicology, vol. 85, no. 9, pp. 1151–1157, 2011. View at Publisher · View at Google Scholar · View at Scopus
  6. D. Grotto, J. Vicentini, J. P. Friedmann Angeli et al., “Evaluation of protective effects of fish oil against oxidative damage in rats exposed to methylmercury,” Ecotoxicology and Environmental Safety, vol. 74, no. 3, pp. 487–493, 2011. View at Publisher · View at Google Scholar · View at Scopus
  7. H. C. Chou and H. L. Chan, “Effect of glutathione reductase knockdown in response to UVB-induced oxidative stress in human lung adenocarcinoma,” Proteome Science, vol. 12, article 2, 2014. View at Google Scholar
  8. W. J. Carr, R. E. Oberley-Deegan, Y. Zhang, C. C. Oberley, L. W. Oberley, and M. Dunnwald, “Antioxidant proteins and reactive oxygen species are decreased in a murine epidermal side population with stem cell-like characteristics,” Histochemistry and Cell Biology, vol. 135, no. 3, pp. 293–304, 2011. View at Publisher · View at Google Scholar · View at Scopus
  9. S. Homma-Takeda, Y. Kugenuma, T. Iwamuro, Y. Kumagai, and N. Shimojo, “Impairment of spermatogenesis in rats by methylmercury: involvement of stage- and cell-specific germ cell apoptosis,” Toxicology, vol. 169, no. 1, pp. 25–35, 2001. View at Publisher · View at Google Scholar · View at Scopus
  10. J. Dufresne and D. G. Cyr, “Effects of short-term methylmercury exposure on metallothionein mRNA levels in the testis and epididymis of the rat,” Journal of Andrology, vol. 20, no. 6, pp. 769–778, 1999. View at Google Scholar · View at Scopus
  11. D. A. Fossato da Silva, C. T. Teixeira, W. R. Scarano et al., “Effects of methylmercury on male reproductive functions in Wistar rats,” Reproductive Toxicology, vol. 31, no. 4, pp. 431–439, 2011. View at Publisher · View at Google Scholar · View at Scopus
  12. M. D. Maines and R. D. Mayer, “Inhibition of testicular cytochrome P-450-dependent steroid biosynthesis by cis-platinum. Reversal by human chorionic gonadotropin,” Journal of Biological Chemistry, vol. 260, no. 10, pp. 6063–6068, 1985. View at Google Scholar · View at Scopus
  13. E. Rodrigues, L. R. Mariutti, and A. Z. Mercadante, “Carotenoids and phenolic compounds from Solanum sessiliflorum, an unexploited Amazonian fruit, and their scavenging capacities against reactive oxygen and nitrogen species,” Journal of Agricultural and Food Chemistry, vol. 61, pp. 3022–3029, 2013. View at Google Scholar
  14. L. K. O. Yuyama, S. H. M. Macedo, J. P. L. Aguiar et al., “Macro and micro nutrients quantification of some cubiu ethnovarieties (Solanum sessiliflorum Dunal),” Acta Amazonica, vol. 37, no. 3, pp. 425–429, 2007. View at Publisher · View at Google Scholar · View at Scopus
  15. F. Marx, E. H. A. Andrade, and J. G. Maia, “Chemical composition of the fruit of Solanum sessiliflorum,” Food Research and Technology, vol. 206, no. 5, pp. 364–366, 1998. View at Google Scholar · View at Scopus
  16. CAC, “General Guide-lines on Sampling CAC-GL-50,” Codex Alimentarius Commission, 2004.
  17. E. P. Nardi, F. S. Evangelista, L. Tormen et al., “The use of inductively coupled plasma mass spectrometry (ICP-MS) for the determination of toxic and essential elements in different types of food samples,” Food Chemistry, vol. 112, no. 3, pp. 727–732, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. G. L. Ellman, “Tissue sulfhydryl groups,” Archives of Biochemistry and Biophysics, vol. 82, no. 1, pp. 70–77, 1959. View at Google Scholar · View at Scopus
  19. J. Seed, R. E. Chapin, E. D. Clegg et al., “Methods for assessing sperm motility, morphology, and counts in the rat, rabbit, and dog: a consensus report,” Reproductive Toxicology, vol. 10, no. 3, pp. 237–244, 1996. View at Google Scholar · View at Scopus
  20. R. Filler, “Methods for evaluation of rats epididymal sperm morphology,” in Male Reproductive Toxicology, R. E. Chapin and J. H. Heindel, Eds., pp. 334–343, Academic Pres, San Diego, Calif, USA, 1993. View at Google Scholar
  21. G. W. Robb, R. P. Amann, and G. J. Killian, “Daily sperm production and epididymal sperm reserves of pubertal and adult rats,” Journal of Reproduction and Fertility, vol. 54, no. 1, pp. 103–107, 1978. View at Google Scholar · View at Scopus
  22. G. L. Foley, “Overview of male reproductive pathology,” Toxicologic Pathology, vol. 29, no. 1, pp. 49–63, 2001. View at Publisher · View at Google Scholar · View at Scopus
  23. M. Farina, M. Aschner, and J. B. T. Rocha, “Oxidative stress in MeHg-induced neurotoxicity,” Toxicology and Applied Pharmacology, vol. 256, no. 3, pp. 405–417, 2011. View at Publisher · View at Google Scholar · View at Scopus
  24. B. Xu, Z. F. Xu, Y. Deng, W. Liu, and H. B. Yang, “Protective effects of MK-801 on methylmercury-induced neuronal injury in rat cerebral cortex: involvement of oxidative stress and glutamate metabolism dysfunction,” Toxicology, vol. 300, pp. 112–120, 2012. View at Google Scholar
  25. F. J. Dieguez-Acuña, W. W. Polk, M. E. Ellis, P. L. Simmonds, J. V. Kushleika, and J. S. Woods, “Nuclear factor κB activity determines the sensitivity of kidney epithelial cells to apoptosis: implications for mercury-induced renal failure,” Toxicological Sciences, vol. 82, no. 1, pp. 114–123, 2004. View at Publisher · View at Google Scholar · View at Scopus
  26. A. Yasutake, A. Nakano, K.-I. Miyamoto, and K. Eto, “Chronic effects of methylmercury in rats—I. Biochemical aspects,” Tohoku Journal of Experimental Medicine, vol. 182, no. 3, pp. 185–196, 1997. View at Publisher · View at Google Scholar · View at Scopus
  27. N. Sørensen, K. Murata, E. Budtz-Jørgensen, P. Weihe, and P. Grandjean, “Prenatal methylmercury exposure as a cardiovascular risk factor at seven years of age,” Epidemiology, vol. 10, no. 4, pp. 370–375, 1999. View at Google Scholar · View at Scopus
  28. F. de Rosis, S. P. Anastasio, and L. Selvaggi, “Female reproductive health in two lamp factories: effects of exposure to inorganic mercury vapour and stress factors,” British Journal of Industrial Medicine, vol. 42, no. 7, pp. 488–494, 1985. View at Google Scholar · View at Scopus
  29. D. F. da Silva Filho, L. K. O. Yuyama, J. Paiva Lopes Aguiar, M. C. Oliveira, and L. H. P. Martins, “Caracterização e avaliação do potencial agronômico e nutricional de etnovariedades de cubiu (Solanum sessiliflorum Dunal) da Amazônia,” Acta Amazonica, vol. 35, no. 4, pp. 399–406, 2005. View at Google Scholar
  30. E. D. Clegg, D. Perreault, and G. R. Klinefelter, “Assessment of male reproductive toxicity,” in Principles and Methods of Toxicology, A. W. Hayes, Ed., pp. 1263–1300, Taylor & Francis, Philadelphia, Pa, USA, 2001. View at Google Scholar
  31. M. Polunas, A. Halladay, R. B. Tjalkens, M. A. Philbert, H. Lowndes, and K. Reuhl, “Role of oxidative stress and the mitochondrial permeability transition in methylmercury cytotoxicity,” NeuroToxicology, vol. 32, no. 5, pp. 526–534, 2011. View at Publisher · View at Google Scholar · View at Scopus
  32. A. Agarwal and R. A. Saleh, “Utility of oxidative stress test in the male infertility clinic,” National Journal of Andrology, vol. 8, no. 1, pp. 1–9, 2002. View at Google Scholar · View at Scopus
  33. G. Lavranos, M. Balla, A. Tzortzopoulou, V. Syriou, and R. Angelopoulou, “Investigating ROS sources in male infertility: a common end for numerous pathways,” Reproductive Toxicology, vol. 34, pp. 298–307, 2012. View at Google Scholar
  34. K. Makker, A. Agarwal, and R. Sharma, “Oxidative stress & male infertility,” Indian Journal of Medical Research, vol. 129, no. 4, pp. 357–367, 2009. View at Google Scholar · View at Scopus
  35. M. Cocuzza, S. C. Sikka, K. S. Athayde, and A. Agarwal, “Clinical relevance of oxidative stress and sperm chromation damage in male infertility: an evidence based analysis,” International Brazilian Journal of Urology, vol. 33, no. 5, pp. 603–621, 2007. View at Google Scholar · View at Scopus
  36. F. Lanzafame, S. la Vignera, E. Vicari, and A. E. Calogero, “Oxidative stress and medical antioxidant treatment in male infertility,” Reproductive BioMedicine Online, vol. 19, no. 5, pp. 638–659, 2009. View at Publisher · View at Google Scholar · View at Scopus
  37. S. I. McNeil and M. K. Bhatnagar, “Ultrastructure of the testis of Pekin ducks fed methyl mercury chloride: seminiferous epithelium,” American Journal of Veterinary Research, vol. 46, no. 9, pp. 2019–2025, 1985. View at Google Scholar · View at Scopus
  38. N. Kaushal and M. P. Bansal, “Dietary selenium variation-induced oxidative stress modulates CDC2/cyclin B1 expression and apoptosis of germ cells in mice testis,” Journal of Nutritional Biochemistry, vol. 18, no. 8, pp. 553–564, 2007. View at Publisher · View at Google Scholar · View at Scopus
  39. U. Marzec-Wroblewska, P. Kaminski, and P. Lakota, “Influence of chemical elements on mammalian spermatozoa,” Folia Biologica, vol. 58, pp. 7–15, 2012. View at Google Scholar
  40. M. P. Cigánková Viera, A. Viera, and J. Bíreš, “Morphological changes of testes in zinc deficient boars,” Acta Veterinaria, vol. 58, pp. 89–97, 2008. View at Google Scholar
  41. R. K. Sharma and A. Agarwal, “Role of reactive oxygen species in male infertility,” Urology, vol. 48, no. 6, pp. 835–850, 1996. View at Publisher · View at Google Scholar · View at Scopus
  42. F. Mazzilli, T. Rossi, M. Marchesini, C. Ronconi, and F. Dondero, “Superoxide anion in human semen related to seminal parameters and clinical aspects,” Fertility and Sterility, vol. 62, no. 4, pp. 862–868, 1994. View at Google Scholar · View at Scopus
  43. D. S. Guzick, J. W. Overstreet, P. Factor-Litvak et al., “Sperm morphology, motility, and concentration in fertile and infertile men,” New England Journal of Medicine, vol. 345, no. 19, pp. 1388–1393, 2001. View at Publisher · View at Google Scholar · View at Scopus
  44. P. Massányi, J. Trandzik, P. Nad et al., “Concentration of copper, iron, zinc, cadmium, lead, and nickel in bull and ram semen and relation to the occurrence of pathological spermatozoa,” Journal of Environmental Science and Health A, vol. 39, no. 11-12, pp. 3005–3014, 2004. View at Publisher · View at Google Scholar · View at Scopus
  45. P. Massányi, J. Trandzik, P. Nad et al., “Seminal concentration of trace elements in fox and relationships to spermatozoa quality,” Journal of Environmental Science and Health A, vol. 40, no. 5, pp. 1097–1105, 2005. View at Publisher · View at Google Scholar · View at Scopus