Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2014 (2014), Article ID 313684, 9 pages
Research Article

Antioxidant/Prooxidant and Antibacterial/Probacterial Effects of a Grape Seed Extract in Complex with Lipoxygenase

1Laboratory of Animal Biology, National Research Development Institute for Animal Biology and Nutrition (IBNA), Calea Bucureşti nr. 1, Baloteşti, 077015 Ilfov, Romania
2Research Center for Functional Genomics, Biomedicine and Translational Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400 565 Cluj-Napoca, Romania
3Department of Microbiology-Immunology, University of Agricultural Sciences and Veterinary Medicine, 3-5 Manastur Street, 400372 Cluj-Napoca, Romania
4School of Agricultural and Food Sciences, Jaramogi Oginga Odinga University of Science and Technology, P.O. Box 210, Bondo 40601, Kenya
5Department of Chemistry and Biochemistry, University of Agricultural Sciences and Veterinary Medicine, 3-5 Manastur Street, 400372 Cluj-Napoca, Romania

Received 22 February 2014; Accepted 29 July 2014; Published 15 September 2014

Academic Editor: Juliana Maria Leite Nobrega de Moura Bell

Copyright © 2014 Veronica Sanda Chedea et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


In an attempt to determine the antioxidant/prooxidant, antibacterial/probacterial action of flavan-3-ols and procyanidins from grape seeds, pure catechin (CS), and an aqueous grape seed extract (PE), were applied in the absence and presence of pure lipoxygenase (LS) or in extract (LE) to leucocyte culture, Escherichia coliB41 and Brevibacterium linens, and observed whether there was any effect on lipid peroxidation, cytotoxicity, or growth rate. Short time periods of coincubation of cells with the polyphenols, followed by the exposure to LS and LE, revealed a high level of lipid peroxidation and a prooxidative effect. Longer coincubation and addition of LS and LE resulted in the reversal of the prooxidant action either to antioxidant activity for CS + LS and PE + LS or to the control level for CS + LE and PE + LE. Lipid peroxidation was significantly reduced when cells were exposed to polyphenols over a longer period. Longer exposure of E. coli to CS or PE followed by addition of LS for 3 h resulted in bactericidal activity. Significant stimulatory effect on microbial growth was observed for PE + LS and PE + LE treatments in B. linens, illustrating the potential probacterial activity in B. linens cultures. Lipoxygenase-polyphenols complex formation was found to be responsible for the observed effects.