Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2014, Article ID 325875, 9 pages
http://dx.doi.org/10.1155/2014/325875
Research Article

Attenuation of Collagen-Induced Arthritis in Rat by Nicotinic Alpha7 Receptor Partial Agonist GTS-21

1Center for Translational Medicine Research and Development, Shen Zhen Institute of Advanced Technology, Chinese Academy of Science, Shen Zhen, Guangdong 518055, China
2Department of Orthopaedics, Shandong University of Traditional Chinese Medicine, Shangdong 250014, China

Received 27 November 2013; Accepted 10 January 2014; Published 27 February 2014

Academic Editor: Lorenzo Cavagna

Copyright © 2014 Yiping Hu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. L. Scott, F. Wolfe, and T. W. J. Huizinga, “Rheumatoid arthritis,” The Lancet, vol. 376, no. 9746, pp. 1094–1108, 2010. View at Publisher · View at Google Scholar · View at Scopus
  2. R. Caporali, L. Cavagna, and C. Montecucco, “Pain in arthritis,” European Journal of Pain Supplements, vol. 3, no. 2, pp. 123–127, 2009. View at Publisher · View at Google Scholar · View at Scopus
  3. B. Fautrel and C. Gaujoux-Viala, “Medical and economic aspects of rheumatoid arthritis,” Bulletin de l'Academie Nationale de Medecine, vol. 196, no. 7, pp. 1295–1305, 2010. View at Google Scholar
  4. A. Ogdie, K. Haynes, A. B. Troxel et al., “Risk of mortality in patients with psoriatic arthritis, rheumatoid arthritis and psoriasis: a longitudinal cohort study,” Annals of the Rheumatic Diseases, vol. 73, no. 1, pp. 149–153, 2014. View at Publisher · View at Google Scholar
  5. C. Meune, E. Touzé, L. Trinquart, and Y. Allanore, “High risk of clinical cardiovascular events in rheumatoid arthritis: levels of associations of myocardial infarction and stroke through a systematic review and meta-analysis,” Archives of Cardiovascular Diseases, vol. 103, no. 4, pp. 253–261, 2010. View at Publisher · View at Google Scholar · View at Scopus
  6. L. Cavagna, S. Monti, V. Grosso et al., “The multifaceted aspects of interstitial lung disease in rheumatoid arthritis,” BioMed Research International, vol. 2013, Article ID 759760, 13 pages, 2013. View at Publisher · View at Google Scholar
  7. L. Cavagna, N. Boffini, G. Cagnotto, F. Inverardi, V. Grosso, and R. Caporali, “Atherosclerosis and rheumatoid arthritis: more than a simple association,” Mediators of Inflammation, vol. 2013, Article ID 147354, 8 pages, 2012. View at Publisher · View at Google Scholar
  8. P. Zhang, D. Han, T. Tang, X. Zhang, and K. Dai, “Inhibition of the development of collagen-induced arthritis in Wistar rats through vagus nerve suspension: a 3-month observation,” Inflammation Research, vol. 57, no. 7, pp. 322–328, 2008. View at Publisher · View at Google Scholar · View at Scopus
  9. R. Kokkola, J. Li, E. Sundberg et al., “Successful treatment of collagen-induced arthritis in mice and rats by targeting extracellular high mobility group box chromosomal protein 1 activity,” Arthritis and Rheumatism, vol. 48, no. 7, pp. 2052–2058, 2003. View at Publisher · View at Google Scholar · View at Scopus
  10. B. Bresnihan, J. M. Alvaro-Gracia, M. Cobby et al., “Treatment of rheumatoid arthritis with recombinant human interleukin-1 receptor antagonist,” Arthritis and Rheumatism, vol. 41, no. 12, pp. 2196–2204, 1998. View at Google Scholar
  11. K. Åkerlund, H. Erlandsson Harris, K. J. Tracey et al., “Anti-inflammatory effects of a new tumour necrosis factor-alpha (TNF-α) inhibitor (CNI-1493) in collagen-induced arthritis (CIA) in rats,” Clinical and Experimental Immunology, vol. 115, no. 1, pp. 32–41, 1999. View at Publisher · View at Google Scholar · View at Scopus
  12. G. Sakellariou, C. A. Scire, S. M. Verstappen, C. Montecucco, and R. Caporali, “In patients with early rheumatoid arthritis, the new ACR/EULAR definition of remission identifies patients with persistent absence of functional disability and suppression of ultrasonographic synovitis,” Annals of the Rheumatic Diseases, vol. 72, no. 2, pp. 245–249, 2013. View at Publisher · View at Google Scholar
  13. E. Gremese, F. Salaffi, S. L. Bosello et al., “Very early rheumatoid arthritis as a predictor of remission: a multicentre real life prospective study,” Annals of the Rheumatic Diseases, vol. 72, no. 6, pp. 858–862, 2013. View at Publisher · View at Google Scholar
  14. J. S. Smolen, R. Landewe, F. C. Breedveld et al., “EULAR recommendations for the management of rheumatoid arthritis with synthetic and biological disease-modifying antirheumatic drugs: 2013 update,” Annals of the Rheumatic Diseases, 2013. View at Publisher · View at Google Scholar
  15. S. Blüml, C. Scheinecker, J. S. Smolen, and K. Redlich, “Targeting TNF receptors in rheumatoid arthritis,” International Immunology, vol. 24, no. 5, pp. 275–281, 2012. View at Publisher · View at Google Scholar · View at Scopus
  16. A. Bagust, A. Boland, J. Hockenhull et al., “Rituximab for the treatment of rheumatoid arthritis,” Health Technology Assessment, vol. 13, supplement 2, pp. 23–29, 2009. View at Google Scholar · View at Scopus
  17. M. Y. Md Yusof and P. Emery, “Targeting interleukin-6 in rheumatoid arthritis,” Drugs, vol. 73, no. 4, pp. 341–356, 2013. View at Publisher · View at Google Scholar
  18. P. Emery, “The therapeutic potential of costimulatory blockade with CTLA4lg in rheumatoid arthritis,” Expert Opinion on Investigational Drugs, vol. 12, no. 4, pp. 673–681, 2003. View at Publisher · View at Google Scholar · View at Scopus
  19. P. Sarzi-Puttini, M. Antivalle, A. Marchesoni et al., “Efficacy and safety of anti-TNF agents in the Lombardy Rheumatoid Arthritis Network (LORHEN),” Reumatismo, vol. 60, no. 4, pp. 290–295, 2008. View at Google Scholar · View at Scopus
  20. F. Atzeni, P. Sarzi-Puttini, A. Mutti, S. Bugatti, L. Cavagna, and R. Caporali, “Long-term safety of abatacept in patients with rheumatoid arthritis,” Autoimmunity Reviews, vol. 12, no. 12, pp. 1115–1117, 2013. View at Google Scholar
  21. F. Atzeni, S. Bongiovanni, A. Marchesoni et al., “Predictors of response to anti-TNF therapy in RA patients with moderate or high DAS28 scores,” Joint Bone Spine, 2013. View at Publisher · View at Google Scholar
  22. L. Quartuccio, M. Fabris, E. Pontarini et al., “The 158VV Fcgamma receptor 3A genotype is associated with response to rituximab in rheumatoid arthritis: results of an Italian multicentre study,” Annals of the Rheumatic Diseases, 2013. View at Publisher · View at Google Scholar
  23. G. R. Burmester, E. Feist, and T. Dorner, “Emerging cell and cytokine targets in rheumatoid arthritis,” Nature Reviews, 2013. View at Publisher · View at Google Scholar
  24. L. Ulloa, “The vagus nerve and the nicotinic anti-inflammatory pathway,” Nature Reviews Drug Discovery, vol. 4, no. 8, pp. 673–684, 2005. View at Publisher · View at Google Scholar · View at Scopus
  25. M. A. Van Maanen, M. C. Lebre, T. Van Der Poll et al., “Stimulation of nicotinic acetylcholine receptors attenuates collagen-induced arthritis in mice,” Arthritis and Rheumatism, vol. 60, no. 1, pp. 114–122, 2009. View at Publisher · View at Google Scholar · View at Scopus
  26. S. L. Oke and K. J. Tracey, “The inflammatory reflex and the role of complementary and alternative medical therapies,” Annals of the New York Academy of Sciences, vol. 1172, pp. 172–180, 2009. View at Publisher · View at Google Scholar · View at Scopus
  27. W. R. Kem, V. M. Mahnir, L. Prokai et al., “Hydroxy metabolites of the Alzheimer's drug candidate 3-[(2,4-dimethoxy)benzylidene]-anabaseine dihydrochloride (GTS-21): their molecular properties, interactions with brain nicotinic receptors, and brain penetration,” Molecular Pharmacology, vol. 65, no. 1, pp. 56–67, 2004. View at Publisher · View at Google Scholar · View at Scopus
  28. M. Westman, M. Engström, A. I. Catrina, and J. Lampa, “Cell specific synovial expression of nicotinic alpha 7 acetylcholine receptor in rheumatoid arthritis and psoriatic arthritis,” Scandinavian Journal of Immunology, vol. 70, no. 2, pp. 136–140, 2009. View at Publisher · View at Google Scholar · View at Scopus
  29. D. J. van Westerloo, I. A. Giebelen, S. Florquin et al., “The vagus nerve and nicotinic receptors modulate experimental pancreatitis severity in mice,” Gastroenterology, vol. 130, no. 6, pp. 1822–1830, 2006. View at Publisher · View at Google Scholar · View at Scopus
  30. V. A. Pavlov, M. Ochani, L.-H. Yang et al., “Selective α7-nicotinic acetylcholine receptor agonist GTS-21 improves survival in murine endotoxemia and severe sepsis,” Critical Care Medicine, vol. 35, no. 4, pp. 1139–1144, 2007. View at Publisher · View at Google Scholar · View at Scopus
  31. I. A. J. Giebelen, D. J. Van Westerloo, G. J. LaRosa, A. F. De Vos, and T. Van Der Poll, “Local stimulation of α7 cholinergic receptors inhibits LPS-induced TNF-α release in the mouse lung,” Shock, vol. 28, no. 6, pp. 700–703, 2007. View at Publisher · View at Google Scholar · View at Scopus
  32. X. Su, W. L. Jae, Z. A. Matthay et al., “Activation of the α7 nAChR reduces acid-induced acute lung injury in mice and rats,” American Journal of Respiratory Cell and Molecular Biology, vol. 37, no. 2, pp. 186–192, 2007. View at Publisher · View at Google Scholar · View at Scopus
  33. M. Kox, J. F. van Velzen, J. C. Pompe, C. W. Hoedemaekers, J. G. van der Hoeven, and P. Pickkers, “GTS-21 inhibits pro-inflammatory cytokine release independent of the Toll-like receptor stimulated via a transcriptional mechanism involving JAK2 activation,” Biochemical Pharmacology, vol. 78, no. 7, pp. 863–872, 2009. View at Publisher · View at Google Scholar · View at Scopus
  34. I. A. J. Giebelen, D. J. Van Westerloo, G. J. LaRosa, A. F. De Vos, and T. Van Der Poll, “Stimulation of α7 cholinergic receptors inhibits lipopolysaccharide-induced neutrophil recruitment by a tumor necrosis factor α-independent mechanism,” Shock, vol. 27, no. 4, pp. 443–447, 2007. View at Publisher · View at Google Scholar · View at Scopus
  35. M. Rosas-Ballina, R. S. Goldstein, M. Gallowitsch-Puerta et al., “The selective α7 agonist GTS-21 attenuates cytokine production in human whole blood and human monocytes activated by ligands for TLR2, TLR3, TLR4, TLR9, and RAGE,” Molecular Medicine, vol. 15, no. 7-8, pp. 195–202, 2009. View at Publisher · View at Google Scholar · View at Scopus
  36. R. Holmdahl, M. E. Andersson, T. J. Goldschmidt et al., “Collagen induced arthritis as an experimental model for rheumatoid arthritis. Immunogenetics, pathogenesis and autoimmunity,” APMIS, vol. 97, no. 7, pp. 575–584, 1989. View at Google Scholar · View at Scopus
  37. D. E. Trentham, A. S. Townes, and A. H. Kang, “Autoimmunity to type II collagen: an experimental model of arthritis,” Journal of Experimental Medicine, vol. 146, no. 3, pp. 857–868, 1977. View at Google Scholar · View at Scopus
  38. J. van Holten, K. Reedquist, P. Sattonet-Roche et al., “Treatment with recombinant interferon-beta reduces inflammation and slows cartilage destruction in the collagen-induced arthritis model of rheumatoid arthritis,” Arthritis Research & Therapy, vol. 6, no. 3, pp. R239–R249, 2004. View at Google Scholar · View at Scopus
  39. H.-S. Lin, C.-Y. Hu, H.-Y. Chan et al., “Anti-rheumatic activities of histone deacetylase (HDAC) inhibitors in vivo in collagen-induced arthritis in rodents,” British Journal of Pharmacology, vol. 150, no. 7, pp. 862–872, 2007. View at Publisher · View at Google Scholar · View at Scopus
  40. T. Tomita, E. Takeuchi, N. Tomita et al., “Suppressed severity of collagen-induced arthritis by in vivo transfection of nuclear factor kappaB decoy oligodeoxynucleotides as a gene therapy,” Arthritis and Rheumatism, vol. 42, no. 12, pp. 2532–2542, 1999. View at Google Scholar
  41. G. Schett, M. Stolina, D. Dwyer et al., “Tumor necrosis factor α and RANKL blockade cannot halt bony spur formation in experimental inflammatory arthritis,” Arthritis and Rheumatism, vol. 60, no. 9, pp. 2644–2654, 2009. View at Publisher · View at Google Scholar · View at Scopus
  42. K. Kawashima, T. Fujii, Y. Moriwaki, H. Misawa, and K. Horiguchi, “Reconciling neuronally and nonneuronally derived acetylcholine in the regulation of immune function,” Annals of the New York Academy of Sciences, vol. 1261, pp. 7–17.
  43. M. Pohanka, “Alpha7 nicotinic acetylcholine receptor is a target in pharmacology and toxicology,” International Journal of Molecular Sciences, vol. 13, no. 2, pp. 2219–2238, 2012. View at Publisher · View at Google Scholar · View at Scopus
  44. B. Cai, F. Chen, Y. Ji et al., “Alpha7 cholinergic-agonist prevents systemic inflammation and improves survival during resuscitation,” Journal of Cellular and Molecular Medicine, vol. 13, no. 9, pp. 3774–3785, 2009. View at Publisher · View at Google Scholar · View at Scopus
  45. M. Nanri, N. Kasahara, J. Yamamoto, H. Miyake, and H. Watanabe, “A comparative study on the effects of nicotine and GTS-21, a new nicotinic agonist, on the locomotor activity and brain monoamine level,” Japanese Journal of Pharmacology, vol. 78, no. 3, pp. 385–389, 1998. View at Publisher · View at Google Scholar · View at Scopus
  46. E. M. Meyer, A. Kuryatov, V. Gerzanich, J. Lindstrom, and R. L. Papke, “Analysis of 3-(4-hydroxy, 2-methoxybenzylidene)anabaseine selectivity and activity at human and rat alpha-7 nicotinic receptors,” Journal of Pharmacology and Experimental Therapeutics, vol. 287, no. 3, pp. 918–925, 1998. View at Google Scholar · View at Scopus
  47. C. Conejero-Goldberg, P. Davies, and L. Ulloa, “Alpha7 nicotinic acetylcholine receptor: a link between inflammation and neurodegeneration,” Neuroscience and Biobehavioral Reviews, vol. 32, no. 4, pp. 693–706, 2008. View at Publisher · View at Google Scholar · View at Scopus
  48. S. Ochi, M. Shinohara, K. Sato et al., “Pathological role of osteoclast costimulation in arthritis-induced bone loss,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 27, pp. 11394–11399, 2007. View at Publisher · View at Google Scholar · View at Scopus
  49. L. Geboes, B. De Klerck, M. Van Balen et al., “Freund's complete adjuvant induces arthritis in mice lacking a functional interferon-γ receptor by triggering tumor necrosis factor α-driven osteoclastogenesis,” Arthritis and Rheumatism, vol. 56, no. 8, pp. 2595–2607, 2007. View at Publisher · View at Google Scholar · View at Scopus