Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2014, Article ID 327538, 16 pages
http://dx.doi.org/10.1155/2014/327538
Research Article

Osteoponin Promoter Controlled by DNA Methylation: Aberrant Methylation in Cloned Porcine Genome

1Department of Life Sciences, National Chung Hsing University, Taichung 402, Taiwan
2School of Medicine, College of Medicine, China Medical University, Taichung 40402, Taiwan
3Department of Otolaryngology Head and Neck Surgery, China Medical University, Taichung 40402, Taiwan
4Department of Bioresources, Da-Yeh University, Changhwa 515, Taiwan
5Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, College of Pharmacy, China Medical University, Taichung 40402, Taiwan
6Department of Animal Science and Technology, National Taiwan University, Taipei 106, Taiwan
7Department of Animal Science and Biotechnology, Tung Hai University, Taichung 407, Taiwan
8Department of Biomedical Informatics, Asia University, Taichung 41354, Taiwan
9Department of Medical Research, Human Genetic Center, China Medical University Hospital, Taichung 40447, Taiwan
10Research Center for Chinese Medicine & Acupuncture, China Medical University, Taichung 40402, Taiwan
11Rong Hsing Research Center for Translational Medicine and the iEGG Center, National Chung Hsing University, Taichung 402, Taiwan

Received 24 February 2014; Accepted 5 March 2014; Published 2 July 2014

Academic Editor: Chung Y. Hsu

Copyright © 2014 Chih-Jie Shen et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. Y. M. Leung, Y. M. Wong, S. W. Chen et al., “Down-regulation of voltage-gated Ca2+ channels in Ca2+ store-depleted rat insulinoma RINm5F cells,” BioMedicine, vol. 3, no. 3, pp. 130–139, 2013. View at Google Scholar · View at Scopus
  2. M.-C. Lin, S.-Y. Tsai, F.-Y. Wang et al., “Leptin induces cell invasion and the upregulation of matrilysin in human colon cancer cells,” BioMedicine, vol. 3, no. 4, pp. 174–180, 2013. View at Publisher · View at Google Scholar
  3. Y.-M. Chang, B. K. Velmurugan, W. W. Kuo, and et al, “Inhibitory effect of alpinate Oxyphyllae fructus extracts on Ang IIinduced cardiac pathological remodeling-related pathways in H9c2 cardiomyoblast cells,” BioMedicine, vol. 3, no. 4, pp. 148–152, 2013. View at Publisher · View at Google Scholar
  4. T. H. Bestor, “The DNA methyltransferases of mammals,” Human Molecular Genetics, vol. 9, no. 16, pp. 2395–2402, 2000. View at Publisher · View at Google Scholar · View at Scopus
  5. P. H. Tate and A. P. Bird, “Effects of DNA methylation on DNA-binding proteins and gene expression,” Current Opinion in Genetics and Development, vol. 3, no. 2, pp. 226–231, 1993. View at Publisher · View at Google Scholar · View at Scopus
  6. W. H. Eyestone and K. H. Campbell, “Nuclear transfer from somatic cells: applications in farm animal species.,” Journal of Reproduction and Fertility, vol. 54, pp. 489–497, 1999. View at Google Scholar · View at Scopus
  7. T. Wakayama, A. C. F. Perry, M. Zuccotti, K. R. Johnson, and R. Yanagimachi, “Full-term development of mice from enucleated oocytes injected with cumulus cell nuclei,” Nature, vol. 394, no. 6691, pp. 369–374, 1998. View at Publisher · View at Google Scholar · View at Scopus
  8. T. Wakayama and R. Yanagimachi, “Mouse cloning with nucleus donor cells of different age and type,” Molecular Reproduction and Development, vol. 58, no. 4, pp. 376–383, 2001. View at Google Scholar
  9. J. Ohgane, T. Wakayama, Y. Kogo et al., “DNA methylation variation in cloned mice,” Genesis, vol. 30, no. 2, pp. 45–50, 2001. View at Publisher · View at Google Scholar · View at Scopus
  10. G. A. Johnson, R. C. Burghardt, F. W. Bazer, and T. E. Spencer, “Osteopontin: roles in implantation and placentation,” Biology of Reproduction, vol. 69, no. 5, pp. 1458–1471, 2003. View at Publisher · View at Google Scholar · View at Scopus
  11. G. F. Weber, S. Zawaideh, S. Hikita, V. A. Kumar, H. Cantor, and S. Ashkar, “Phosphorylation-dependent interaction of osteopontin with its receptors regulates macrophage migration and activation,” Journal of Leukocyte Biology, vol. 72, no. 4, pp. 752–761, 2002. View at Google Scholar · View at Scopus
  12. M. Mazzali, T. Kipari, V. Ophascharoensuk, J. A. Wesson, R. Johnson, and J. Hughes, “Osteopontin—a molecule for all seasons,” QJM, vol. 95, no. 1, pp. 3–13, 2002. View at Publisher · View at Google Scholar · View at Scopus
  13. N. S. Fedarko, A. Jain, A. Karadag, M. R. van Eman, and L. W. Fisher, “Elevated serum bone sialoprotein and osteopontin in colon, breast, prostate, and lung cancer,” Clinical Cancer Research, vol. 7, no. 12, pp. 4060–4066, 2001. View at Google Scholar · View at Scopus
  14. G. Chakraborty, S. Jain, and G. C. Kundu, “Osteopontin promotes vascular endothelial growth factor-dependent breast tumor growth and angiogenesis via autocrine and paracrine mechanisms,” Cancer Research, vol. 68, no. 1, pp. 152–161, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. R. Agnihotri, H. C. Crawford, H. Haro, L. M. Matrisian, M. C. Havrda, and L. Liaw, “Osteopontin, a novel substrate for matrix metalloproteinase-3 (stromelysin-1) and matrix metalloproteinase-7 (matrilysin),” The Journal of Biological Chemistry, vol. 276, no. 30, pp. 28261–28267, 2001. View at Publisher · View at Google Scholar · View at Scopus
  16. D. Wang, S. Yamamoto, N. Hijiya, E. N. Benveniste, and C. L. Gladson, “Transcriptional regulation of the human osteopontin promoter: Functional analysis and DNA-protein interactions,” Oncogene, vol. 19, no. 50, pp. 5801–5809, 2000. View at Publisher · View at Google Scholar · View at Scopus
  17. H. Rangaswami, A. Bulbule, and G. C. Kundu, “Osteopontin: role in cell signaling and cancer progression,” Trends in Cell Biology, vol. 16, no. 2, pp. 79–87, 2006. View at Publisher · View at Google Scholar · View at Scopus
  18. H. Rangaswami, A. Bulbule, and G. C. Kundu, “Nuclear factor-inducing kinase plays a crucial role in osteopontin-induced MAPK/IκBα kinase-dependent nuclear factor κB-mediated promatrix metalloproteinase-9 activation,” Journal of Biological Chemistry, vol. 279, no. 37, pp. 38921–38935, 2004. View at Publisher · View at Google Scholar · View at Scopus
  19. A. B. Tuck, D. M. Arsenault, F. P. O'Malley et al., “Osteopontin induces increased invasiveness and plasminogen activator expression of human mammary epithelial cells,” Oncogene, vol. 18, no. 29, pp. 4237–4246, 1999. View at Publisher · View at Google Scholar · View at Scopus
  20. H. Okamoto, “Osteopontin and cardiovascular system,” Molecular and Cellular Biochemistry, vol. 300, no. 1-2, pp. 1–7, 2007. View at Publisher · View at Google Scholar · View at Scopus
  21. F. Schoensiegel, R. Bekeredjian, A. Schrewe et al., “Atrial natriuretic peptide and osteopontin are useful markers of cardiac disorders in mice,” Comparative Medicine, vol. 57, no. 6, pp. 546–553, 2007. View at Google Scholar · View at Scopus
  22. R. Sakata, S. Minami, Y. Sowa, M. Yoshida, and T. Tamaki, “Trichostatin A activates the osteopontin gene promoter through AP1 site,” Biochemical and Biophysical Research Communications, vol. 315, no. 4, pp. 959–963, 2004. View at Publisher · View at Google Scholar · View at Scopus
  23. K. H. Choi, H. Basma, J. Singh, and P. W. Cheng, “Activation of CMV promoter-controlled glycosyltransferase and β-galactosidase glycogenes by butyrate, tricostatin A, and 5-aza-2′-deoxycytidine,” Glycoconjugate Journal, vol. 22, no. 1-2, pp. 63–69, 2005. View at Publisher · View at Google Scholar · View at Scopus
  24. B. M. Kumar, H.-F. Jin, J.-G. Kim et al., “DNA methylation levels in porcine fetal fibroblasts induced by an inhibitor of methylation, 5-azacytidine,” Cell and Tissue Research, vol. 325, no. 3, pp. 445–454, 2006. View at Publisher · View at Google Scholar · View at Scopus
  25. S. Pronk, S. Páll, R. Schulz et al., “GROMACS 4.5: a high-throughput and highly parallel open source molecular simulation toolkit,” Bioinformatics, vol. 29, no. 7, pp. 845–854, 2013. View at Publisher · View at Google Scholar · View at Scopus
  26. E. Chovancova, A. Pavelka, P. Benes et al., “CAVER 3.0: a tool for the analysis of transport pathways in dynamic protein structures,” PLoS Computational Biology, vol. 8, no. 10, Article ID e1002708, 2012. View at Publisher · View at Google Scholar · View at Scopus
  27. Q. Zhang, J. L. Wrana, and J. Sodek, “Characterization of the promoter region of the porcine opn (osteopontin, secreted phosphoprotein 1) gene. Identification of positive and negative regulatory elements and a “silent” second promoter,” European Journal of Biochemistry, vol. 207, no. 2, pp. 649–659, 1992. View at Publisher · View at Google Scholar · View at Scopus
  28. M. Y. Lee, J. S. Choi, S. W. Lim, J. H. Cha, M. H. Chun, and J. W. Chung, “Expression of osteopontin mRNA in developing rat brainstem and cerebellum,” Cell and Tissue Research, vol. 306, no. 2, pp. 179–185, 2001. View at Publisher · View at Google Scholar · View at Scopus
  29. L. Liaw, D. E. Birk, C. B. Ballas, J. S. Whitsitt, J. M. Davidson, and B. L. Hogan, “Altered wound healing in mice lacking a functional osteopontin gene (spp1),” The Journal of Clinical Investigation, vol. 101, no. 7, pp. 1468–1478, 1998. View at Google Scholar
  30. N. A. Trueblood, Z. Xie, C. Communal et al., “Exaggerated left ventricular dilation and reduced collagen deposition after myocardial infarction in mice lacking osteopontin,” Circulation Research, vol. 88, no. 10, pp. 1080–1087, 2001. View at Publisher · View at Google Scholar · View at Scopus
  31. M. Fujimoto, R. Kitazawa, S. Maeda, and S. Kitazawa, “Methylation adjacent to negatively regulating AP-1 site reactivates TrkA gene expression during cancer progression,” Oncogene, vol. 24, no. 32, pp. 5108–5118, 2005. View at Publisher · View at Google Scholar · View at Scopus
  32. Accelerys, Discovery Studio Client v2.5, Accelrys, San Diego, Calif, USA, 2009.
  33. D. B. Nikolov, H. Chen, E. D. Halay et al., “Crystal structure of a TFIIB-TBP-TATA-element ternary complex,” Nature, vol. 377, no. 6545, pp. 119–128, 1995. View at Publisher · View at Google Scholar · View at Scopus
  34. P. Sharma, S. Kumar, and G. C. Kundu, “Transcriptional regulation of human osteopontin promoter by histone deacetylase inhibitor, trichostatin A in cervical cancer cells,” Molecular Cancer, vol. 9, article 178, 2010. View at Publisher · View at Google Scholar · View at Scopus