Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2014, Article ID 351095, 12 pages
http://dx.doi.org/10.1155/2014/351095
Research Article

Pathway Bridge Based Multiobjective Optimization Approach for Lurking Pathway Prediction

1Electrical and Computer Engineering Department, Texas A&M University, College Station, TX 77840, USA
2Radiology Comprehensive Cancer Center Cancer Biology, Wake Forest University, Winston-Salem, NC 27103, USA

Received 28 January 2014; Accepted 16 March 2014; Published 16 April 2014

Academic Editor: Xing-Ming Zhao

Copyright © 2014 Rengjing Zhang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. I. P. Witz and O. Levy-Nissenbaum, “The tumor microenvironment in the post-PAGET era,” Cancer Letters, vol. 242, no. 1, pp. 1–10, 2006. View at Publisher · View at Google Scholar · View at Scopus
  2. M. Zeisberg, J. I. Hanai, H. Sugimoto et al., “BMP-7 counteracts TGF-β1-induced epithelial-to-mesenchymal transition and reverses chronic renal injury,” Nature Medicine, vol. 9, no. 7, pp. 964–968, 2003. View at Publisher · View at Google Scholar · View at Scopus
  3. Y. Kojima, A. Acar, E. N. Eaton et al., “Autocrine TGF-β and stromal cell-derived factor-1 (SDF-1) signaling drives the evolution of tumor-promoting mammary stromal myofibroblasts,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 46, pp. 20009–20014, 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. L. Y. Luo, A. Soosaipillai, and E. P. Diamandis, “Molecular cloning of a novel human gene on chromosome 4p11 by immunoscreening of an ovarian carcinoma cDNA library,” Biochemical and Biophysical Research Communications, vol. 280, no. 1, pp. 401–406, 2001. View at Publisher · View at Google Scholar · View at Scopus
  5. F. Gueugnon, S. Leclercq, C. Blanquart et al., “Identification of novel markers for the diagnosis of malignant pleural mesothelioma,” The American Journal of Pathology, vol. 178, no. 3, pp. 1033–1042, 2011. View at Publisher · View at Google Scholar · View at Scopus
  6. M. Kulis, S. Heath, M. Bibikova et al., “Epigenomic analysis detects widespread gene-body dna hypomethylation in chronic lymphocytic leukemia,” Nature Genetics, vol. 44, no. 11, pp. 1236–1242, 2012. View at Google Scholar
  7. H. Noushmehr, D. J. Weisenberger, K. Diefes et al., “Identification of a cpg island methylator phenotype that defines a distinct subgroup of glioma,” Cancer Cell, vol. 17, no. 5, pp. 510–522, 2010. View at Publisher · View at Google Scholar · View at Scopus
  8. H. Kim, J. Watkinson, V. Varadan, and D. Anastassiou, “Multi-cancer computational analysis reveals invasion-associated variant of desmoplastic reaction involving INHBA, THBS2 and COL11A1,” BMC Medical Genomics, vol. 3, article 51, 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. C. Jiang, Z. Xuan, F. Zhao, and M. Q. Zhang, “TRED: a transcriptional regulatory element database, new entries and other development,” Nucleic Acids Research, vol. 35, no. 1, pp. 137–140, 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. S. Peri, J. D. Navarro, T. Z. Kristiansen et al., “Human protein reference database as a discovery resource for proteomics,” Nucleic Acids Research, vol. 32, pp. 497–501, 2004. View at Google Scholar · View at Scopus
  11. M. Kanehisa and S. Goto, “Kegg: kyoto encyclopedia of genes and genomes,” Nucleic Acids Research, vol. 28, no. 1, pp. 27–30, 2000. View at Google Scholar · View at Scopus
  12. Ingenuity Systems, http://www.ingenuity.com/.
  13. S. Wernicke and F. Rasche, “FANMOD: A tool for fast network motif detection,” Bioinformatics, vol. 22, no. 9, pp. 1152–1153, 2006. View at Publisher · View at Google Scholar · View at Scopus
  14. G. Jin, K. Cui, X. Zhou, and S. T. C. Wong, “Unraveling the signal-transduction networks in cancer metastasis,” IEEE Signal Processing Magazine, vol. 26, no. 5, pp. 129–132, 2009. View at Publisher · View at Google Scholar · View at Scopus
  15. F. Schreiber and H. Schwöbbermeyer, “Motifs in biological networks,” 2008.
  16. M. Ogawa, A. C. LaRue, and C. J. Drake, “Hematopoietic origin of fibroblasts/myofibroblasts: its pathophysiologic implications,” Blood, vol. 108, no. 9, pp. 2893–2896, 2006. View at Publisher · View at Google Scholar · View at Scopus
  17. J. Stegmüller, M. A. Huynh, Z. Yuan, Y. Konishi, and A. Bonni, “TGFβ-Smad2 signaling regulates the Cdh1-APC/SnoN pathway of axonal morphogenesis,” Journal of Neuroscience, vol. 28, no. 8, pp. 1961–1969, 2008. View at Publisher · View at Google Scholar · View at Scopus
  18. J. Varani, M. J. Bendelow, D. E. Sealey et al., “Tumor necrosis factor enhances susceptibility of vascular endothelial cells to neutrophil-mediated killing,” Laboratory Investigation, vol. 59, no. 2, pp. 292–295, 1988. View at Google Scholar · View at Scopus
  19. T. Amann, Y. Egle, A.-K. Bosserhoff, and C. Hellerbrand, “FHL2 suppresses growth and differentiation of the colon cancer cell line HT-29,” Oncology Reports, vol. 23, no. 6, pp. 1669–1674, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. K. B. Lee, J. H. Jeon, I. Choi, O. Y. Kwon, K. Yu, and K. H. You, “Clusterin, a novel modulator of TGF-β signaling, is involved in Smad2/3 stability,” Biochemical and Biophysical Research Communications, vol. 366, no. 4, pp. 905–909, 2008. View at Publisher · View at Google Scholar · View at Scopus
  21. T. Vincent, E. P. A. Neve, J. R. Johnson et al., “A Snail1-Smad3/4 transcriptional repressor complex promotes TGF-β mediated epithelial-mesenchymal transition,” Nature Cell Biology, vol. 11, no. 8, pp. 943–950, 2009. View at Publisher · View at Google Scholar · View at Scopus
  22. P. Papageorgis, A. W. Lambert, S. Ozturk et al., “Smad signaling is required to maintain epigenetic silencing during breast cancer progression,” Cancer Research, vol. 70, no. 3, pp. 968–978, 2010. View at Publisher · View at Google Scholar · View at Scopus
  23. S. Matsumura, I. Imoto, K. Kozaki et al., “Integrative array-based approach identifies mzb1 as a frequently methylated putative tumor suppressor in hepatocellular carcinoma,” Clinical Cancer Research, vol. 18, no. 13, pp. 3541–3551, 2012. View at Google Scholar
  24. S. I. Berndt, W. Y. Huang, N. Chatterjee et al., “Transforming growth factor beta 1 (TGFB1) gene polymorphisms and risk of advanced colorectal adenoma,” Carcinogenesis, vol. 28, no. 9, pp. 1965–1970, 2007. View at Publisher · View at Google Scholar · View at Scopus
  25. H. Y. Lan, “Diverse roles of TGF-β/smads in renal fibrosis and inflammation,” International Journal of Biological Sciences, vol. 7, no. 7, pp. 1056–1067, 2011. View at Google Scholar · View at Scopus
  26. H. Y. Kang, H. K. Lin, Y. C. Hu, S. Yeh, K. E. Huang, and C. Chang, “From transforming growth factor-β signaling to androgen action: Identification of Smad3 as an androgen receptor coregulator in prostate cancer cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 6, pp. 3018–3023, 2001. View at Publisher · View at Google Scholar · View at Scopus
  27. Y. Niu, S. Altuwaijri, K. P. Lai et al., “Androgen receptor is a tumor suppressor and proliferator in prostate cancer,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 34, pp. 12182–12187, 2008. View at Publisher · View at Google Scholar · View at Scopus
  28. H. Y. Kang, K. E. Huang, S. Y. Chang, W. L. Ma, W. J. Lin, and C. Chang, “Differential modulation of androgen receptor-mediated transactivation by smad3 and tumor suppressor smad4,” Journal of Biological Chemistry, vol. 277, no. 46, pp. 43749–43756, 2002. View at Publisher · View at Google Scholar · View at Scopus