Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2014 (2014), Article ID 364625, 10 pages
http://dx.doi.org/10.1155/2014/364625
Research Article

Potential Mitochondrial Isocitrate Dehydrogenase R140Q Mutant Inhibitor from Traditional Chinese Medicine against Cancers

1Department of Biomedical Informatics, Asia University, Taichung 41354, Taiwan
2School of Medicine, College of Medicine, China Medical University, Taichung 40402, Taiwan
3Department of Neurosurgery, China Medical University Hospital, Taichung 40447, Taiwan
4School of Pharmacy, China Medical University, Taichung 40402, Taiwan
5Research Center for Chinese Medicine & Acupuncture, China Medical University, Taichung 40402, Taiwan

Received 16 February 2014; Revised 4 March 2014; Accepted 4 March 2014; Published 5 June 2014

Academic Editor: Chung Y. Hsu

Copyright © 2014 Wen-Yuan Lee et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. I.-C. Chou, W.-D. Lin, C.-H. Wang et al., “Association analysis between Tourette's syndrome and two dopamine genes (DAT1, DBH) in Taiwanese children,” BioMedicine, vol. 3, no. 2, pp. 88–91, 2013. View at Publisher · View at Google Scholar · View at Scopus
  2. T. Yamamoto, W.-C. Hung, T. Takano, and A. Nishiyama, “Genetic nature and virulence of community-associated methicillin-resistant Staphylococcus aureus,” BioMedicine, vol. 3, no. 1, pp. 2–18, 2013. View at Publisher · View at Google Scholar · View at Scopus
  3. Y. Jiang, X. Li, W. Yang et al., “PKM2 regulates chromosome segregation and mitosis progression of tumor cells,” Molecular Cell, vol. 53, no. 1, pp. 75–87, 2014. View at Publisher · View at Google Scholar
  4. Y.-M. Chang, B. K. Velmurugan, W.-W. Kuo et al., “Inhibitory effect of alpinate Oxyphyllae fructus extracts on Ang II-induced cardiac pathological remodeling-related pathways in H9c2 cardiomyoblast cells,” BioMedicine, vol. 3, no. 4, pp. 148–152, 2013. View at Publisher · View at Google Scholar · View at Scopus
  5. Y. M. Leung, K. L. Wong, S. W. Chen et al., “Down-regulation of voltage-gated Ca2+ channels in Ca2+ store-depleted rat insulinoma RINm5F cells,” BioMedicine, vol. 3, no. 3, pp. 130–139, 2013. View at Publisher · View at Google Scholar · View at Scopus
  6. S. P. Mahamuni, R. D. Khose, F. Menaa, and S. L. Badole, “Therapeutic approaches to drug targets in hyperlipidemia,” BioMedicine, vol. 2, no. 4, pp. 137–146, 2012. View at Publisher · View at Google Scholar · View at Scopus
  7. M. A. Leissring, E. Malito, S. Hedouin et al., “Designed inhibitors of insulin-degrading enzyme regulate the catabolism and activity of insulin,” PLoS ONE, vol. 5, no. 5, Article ID e10504, 2010. View at Publisher · View at Google Scholar · View at Scopus
  8. M.-C. Lin, S.-Y. Tsai, F.-Y. Wang, F.-H. Liu, J.-N. Syu, and F.-Y. Tang, “Leptin induces cell invasion and the upregulation of matrilysin in human colon cancer cells,” BioMedicine, vol. 3, no. 4, pp. 174–180, 2013. View at Publisher · View at Google Scholar
  9. V. Janssens and J. Goris, “Protein phosphatase 2A: a highly regulated family of serine/threonine phosphatases implicated in cell growth and signalling,” Biochemical Journal, vol. 353, no. 3, pp. 417–439, 2001. View at Publisher · View at Google Scholar · View at Scopus
  10. K.-P. Su, “Inflammation in psychopathology of depression: clinical, biological, and therapeutic implications,” BioMedicine, vol. 2, no. 2, pp. 68–74, 2012. View at Publisher · View at Google Scholar · View at Scopus
  11. C.-L. Jao, S.-L. Huang, and K.-C. Hsu, “Angiotensin I-converting enzyme inhibitory peptides: inhibition mode, bioavailability, and antihypertensive effects,” BioMedicine, vol. 2, no. 4, pp. 130–136, 2012. View at Publisher · View at Google Scholar · View at Scopus
  12. I. Lokody, “Metabolism: IDH2 drives cancer in vivo,” Nature Reviews Cancer, vol. 13, no. 11, pp. 756–757, 2013. View at Google Scholar
  13. B. R. Das, R. Tangri, F. Ahmad, A. Roy, and K. Patole, “Molecular investigation of isocitrate dehydrogenase gene (IDH) mutations in gliomas: first report of IDH2 mutations in Indian patients,” Asian Pacific Journal of Cancer Prevention, vol. 14, no. 12, pp. 7261–7264, 2013. View at Publisher · View at Google Scholar
  14. K. E. Yen, M. A. Bittinger, S. M. Su, and V. R. Fantin, “Cancer-associated IDH mutations: biomarker and therapeutic opportunities,” Oncogene, vol. 29, no. 49, pp. 6409–6417, 2010. View at Publisher · View at Google Scholar · View at Scopus
  15. C. Lu, S. Venneti, A. Akalin et al., “Induction of sarcomas by mutant IDH2,” Genes & Development, vol. 27, no. 18, pp. 1986–1998, 2013. View at Publisher · View at Google Scholar
  16. C. Chen, Y. Liu, C. Lu et al., “Cancer-associated IDH2 mutants drive an acute myeloid leukemia that is susceptible to Brd4 inhibition,” Genes & Development, vol. 27, no. 18, pp. 1974–1985, 2013. View at Publisher · View at Google Scholar
  17. A. R. Grassian, R. Pagliarini, and D. Y. Chiang, “Mutations of isocitrate dehydrogenase 1 and 2 in intrahepatic cholangiocarcinoma,” Current Opinion in Gastroenterology, vol. 30, no. 3, pp. 295–302, 2014. View at Publisher · View at Google Scholar
  18. J. B. Wang, D. F. Dong, M. D. Wang, and K. Gao, “IDH1 overexpression induced chemotherapy resistance and IDH1 mutation enhanced chemotherapy sensitivity in Glioma cells in vitro and in vivo,” Asian Pacific Journal of Cancer Prevention, vol. 15, no. 1, pp. 427–432, 2014. View at Google Scholar
  19. J. B. Wang, D. F. Dong, K. Gao, and M. D. Wang, “Mechanisms underlying the biological changes induced by isocitrate dehydrogenase-1 mutation in glioma cells,” Oncology Letters, vol. 7, no. 3, pp. 651–657, 2014. View at Google Scholar
  20. L. M. Kats, M. Reschke, R. Taulli et al., “Proto-oncogenic role of mutant IDH2 in leukemia initiation and maintenance,” Cell Stem Cell, vol. 14, no. 3, pp. 329–341, 2014. View at Publisher · View at Google Scholar
  21. E. Mylonas, M. Janin, O. Bawa et al., “Isocitrate dehydrogenase (IDH)2 R140Q mutation induces myeloid and lymphoid neoplasms in mice,” Leukemia, 2014. View at Publisher · View at Google Scholar
  22. H. Sabit, M. Nakada, T. Furuta et al., “Characterizing invading glioma cells based on IDH1-R132H and Ki-67 immunofluorescence,” Brain Tumor Pathology, 2014. View at Publisher · View at Google Scholar
  23. E. Bobrovnikova-Marjon and J. B. Hurov, “Targeting metabolic changes in cancer: novel therapeutic approaches,” Annual Review of Medicine, vol. 65, pp. 157–170, 2014. View at Publisher · View at Google Scholar
  24. C. Y.-C. Chen, “A novel integrated framework and improved methodology of computer-aided drug design,” Current Topics in Medicinal Chemistry, vol. 13, no. 9, pp. 965–988, 2013. View at Publisher · View at Google Scholar · View at Scopus
  25. H.-J. Huang, H. W. Yu, C.-Y. Chen et al., “Current developments of computer-aided drug design,” Journal of the Taiwan Institute of Chemical Engineers, vol. 41, no. 6, pp. 623–635, 2010. View at Publisher · View at Google Scholar · View at Scopus
  26. C.-Y. Chen and C. Y.-C. Chen, “Insights into designing the dual-targeted HER2/HSP90 inhibitors,” Journal of Molecular Graphics and Modelling, vol. 29, no. 1, pp. 21–31, 2010. View at Publisher · View at Google Scholar · View at Scopus
  27. S.-C. Yang, S.-S. Chang, H.-Y. Chen, and C. Y.-C. Chen, “Identification of potent EGFR inhibitors from TCM Database@Taiwan,” PLoS Computational Biology, vol. 7, no. 10, Article ID e1002189, 2011. View at Publisher · View at Google Scholar · View at Scopus
  28. Y.-A. Tsou, K.-C. Chen, H.-C. Lin, S.-S. Chang, and C. Y.-C. Chen, “Uroporphyrinogen decarboxylase as a potential target for specific components of traditional Chinese medicine: a virtual screening and molecular dynamics study,” PLoS ONE, vol. 7, no. 11, Article ID e50087, 2012. View at Publisher · View at Google Scholar · View at Scopus
  29. K.-C. Chen, M.-F. Sun, S.-C. Yang et al., “Investigation into potent inflammation inhibitors from traditional chinese medicine,” Chemical Biology and Drug Design, vol. 78, no. 4, pp. 679–688, 2011. View at Publisher · View at Google Scholar · View at Scopus
  30. S.-S. Chang, H.-J. Huang, and C. Y.-C. Chen, “Two birds with one stone? Possible dual-targeting H1N1 inhibitors from traditional Chinese medicine,” PLoS Computational Biology, vol. 7, no. 12, Article ID e1002315, 2011. View at Publisher · View at Google Scholar · View at Scopus
  31. H. J. Huang, Y. R. Jian, and C. Y. C. Chen, “Traditional Chinese medicine application in HIV: an in silico study,” Journal of Biomolecular Structure & Dynamics, vol. 32, no. 1, pp. 1–12, 2014. View at Publisher · View at Google Scholar
  32. K.-C. Chen, S.-S. Chang, H.-J. Huang, T.-L. Lin, Y.-J. Wu, and C. Y.-C. Chen, “Three-in-one agonists for PPAR-a, PPAR-γ, and PPAR-d from traditional Chinese medicine,” Journal of Biomolecular Structure and Dynamics, vol. 30, no. 6, pp. 662–683, 2012. View at Publisher · View at Google Scholar · View at Scopus
  33. K. C. Chen, S. S. Chang, F. J. Tsai, and C. Y. Chen, “Han ethnicity-specific type 2 diabetic treatment from traditional Chinese medicine?” Journal of Biomolecular Structure & Dynamics, vol. 31, no. 11, pp. 1219–1235, 2013. View at Publisher · View at Google Scholar
  34. K.-C. Chen and C. Yu-Chian Chen, “Stroke prevention by traditional Chinese medicine? A genetic algorithm, support vector machine and molecular dynamics approach,” Soft Matter, vol. 7, no. 8, pp. 4001–4008, 2011. View at Publisher · View at Google Scholar · View at Scopus
  35. K.-C. Chen, K.-W. Chang, H.-Y. Chen, and C. Y.-C. Chen, “Traditional Chinese medicine, a solution for reducing dual stroke risk factors at once?” Molecular BioSystems, vol. 7, no. 9, pp. 2711–2719, 2011. View at Publisher · View at Google Scholar · View at Scopus
  36. T.-T. Chang, K.-C. Chen, K.-W. Chang et al., “In silico pharmacology suggests ginger extracts may reduce stroke risks,” Molecular BioSystems, vol. 7, no. 9, pp. 2702–2710, 2011. View at Publisher · View at Google Scholar · View at Scopus
  37. W. I. Tou, S.-S. Chang, C.-C. Lee, and C. Y.-C. Chen, “Drug design for neuropathic pain regulation from traditional Chinese medicine,” Scientific Reports, vol. 3, article 844, 2013. View at Google Scholar · View at Scopus
  38. K. C. Chen, Y. R. Jian, M. F. Sun, T. T. Chang, C. C. Lee, and C. Y. Chen, “Investigation of silent information regulator 1 (Sirt1) agonists from traditional Chinese medicine,” Journal of Biomolecular Structure & Dynamics, vol. 31, no. 11, pp. 1207–1218, 2013. View at Publisher · View at Google Scholar
  39. H.-C. Tang and C. Y.-C. Chen, “Investigation of the novel lead of melanocortin 1 receptor for pigmentary disorders,” Evidence-Based Complementary and Alternative Medicine, vol. 2014, Article ID 254678, 13 pages, 2014. View at Publisher · View at Google Scholar
  40. H.-J. Huang, C.-C. Lee, and C. Y.-C. Chen, “Pharmacological chaperone design for reducing risk factor of Parkinson's disease from traditional chinese medicin,” Evidence-Based Complementary and Alternative Medicine, vol. 2014, Article ID 830490, 12 pages, 2014. View at Publisher · View at Google Scholar
  41. H. Y. Chen, S. S. Chang, Y. C. Chan, and C. Y. Chen, “Discovery of novel insomnia leads from screening traditional Chinese medicine database,” Journal of Biomolecular Structure & Dynamics, vol. 32, no. 5, pp. 776–791, 2014. View at Publisher · View at Google Scholar
  42. F. Wang, J. Travins, B. DeLaBarre et al., “Targeted inhibition of mutant IDH2 in leukemia cells induces cellular differentiation,” Science, vol. 340, no. 6132, pp. 622–626, 2013. View at Publisher · View at Google Scholar · View at Scopus
  43. C. Y.-C. Chen, “TCM Database@Taiwan: the world's largest traditional Chinese medicine database for drug screening In Silico,” PLoS ONE, vol. 6, no. 1, Article ID e15939, 2011. View at Publisher · View at Google Scholar · View at Scopus
  44. W. I. Tou and C. Y. Chen, “May disordered protein cause serious drug side effect?” Drug Discovery Today, vol. 19, no. 4, pp. 367–372, 2014. View at Publisher · View at Google Scholar
  45. C. Y.-C. Chen and W. I. Tou, “How to design a drug for the disordered proteins?” Drug Discovery Today, vol. 18, no. 19-20, pp. 910–915, 2013. View at Publisher · View at Google Scholar · View at Scopus
  46. B. Xue, R. L. Dunbrack, R. W. Williams, A. K. Dunker, and V. N. Uversky, “PONDR-FIT: a meta-predictor of intrinsically disordered amino acids,” Biochimica et Biophysica Acta: Proteins and Proteomics, vol. 1804, no. 4, pp. 996–1010, 2010. View at Publisher · View at Google Scholar · View at Scopus
  47. B. R. Brooks, R. E. Bruccoleri, B. D. Olafson, D. J. States, S. Swaminathan, and M. Karplus, “CHARMM: a program for macromolecular energy minimization and dynamics calculations,” Journal of Computational Chemistry, vol. 4, no. 2, pp. 187–217, 1983. View at Publisher · View at Google Scholar
  48. C. A. Lipinski, F. Lombardo, B. W. Dominy, and P. J. Feeney, “Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings,” Advanced Drug Delivery Reviews, vol. 46, no. 1–3, pp. 3–26, 2001. View at Publisher · View at Google Scholar · View at Scopus
  49. C. M. Venkatachalam, X. Jiang, T. Oldfield, and M. Waldman, “LigandFit: a novel method for the shape-directed rapid docking of ligands to protein active sites,” Journal of Molecular Graphics and Modelling, vol. 21, no. 4, pp. 289–307, 2003. View at Publisher · View at Google Scholar · View at Scopus
  50. B. Hess, C. Kutzner, D. Van Der Spoel, and E. Lindahl, “GRGMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation,” Journal of Chemical Theory and Computation, vol. 4, no. 3, pp. 435–447, 2008. View at Publisher · View at Google Scholar · View at Scopus
  51. V. Zoete, M. A. Cuendet, A. Grosdidier, and O. Michielin, “SwissParam: a fast force field generation tool for small organic molecules,” Journal of Computational Chemistry, vol. 32, no. 11, pp. 2359–2368, 2011. View at Publisher · View at Google Scholar · View at Scopus
  52. R. Fletcher, Optimization, Academic Press, London, UK, 1969.
  53. E. Chovancova, A. Pavelka, P. Benes et al., “CAVER 3.0: a tool for the analysis of transport pathways in dynamic protein structures,” PLoS Computational Biology, vol. 8, no. 10, Article ID e1002708, 2012. View at Publisher · View at Google Scholar · View at Scopus
  54. O. Adelowotan, I. Aibinu, E. Adenipekun, and T. Odugbemi, “The in-vitro antimicrobial activity of Abrus precatorius (L) fabaceae extract on some clinical pathogens,” The Nigerian Postgraduate Medical Journal, vol. 15, no. 1, pp. 32–37, 2008. View at Google Scholar · View at Scopus
  55. G. B. Zore, V. Awad, A. D. Thakre et al., “Activity-directed-fractionation and isolation of four antibacterial compounds from Abrus precatorius L., roots,” Natural Product Research, vol. 21, no. 9, pp. 838–845, 2007. View at Publisher · View at Google Scholar · View at Scopus
  56. M. Shafi Sofi, M. K. Sateesh, M. Bashir et al., “Cytotoxic and pro-apoptotic effects of Abrus precatorius L. on human metastatic breast cancer cell line, MDA-MB-231,” Cytotechnology, vol. 65, no. 3, pp. 407–417, 2013. View at Publisher · View at Google Scholar · View at Scopus
  57. V. V. Reddy and M. Sirsi, “Effect of Abrus precatorius L. on experimental tumors,” Cancer Research, vol. 29, no. 7, pp. 1447–1451, 1969. View at Google Scholar · View at Scopus