Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2014 (2014), Article ID 368703, 10 pages
http://dx.doi.org/10.1155/2014/368703
Review Article

The Nonglycemic Actions of Dipeptidyl Peptidase-4 Inhibitors

1Hanbang Body-Fluid Research Center and College of Oriental Medicine, Wonkwang University, 460 Iksandae-ro, Iksan 570-749, Republic of Korea
2Department of Internal Medicine, Wonkwang University School of Medicine & Hospital, 895 Muwang-ro, Iksan 570-711, Republic of Korea

Received 20 June 2014; Accepted 10 July 2014; Published 21 July 2014

Academic Editor: Dae Gill Kang

Copyright © 2014 Na-Hyung Kim et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. M. Nathan, “Finding new treatments for diabetes—how many, how fast... How good?” The New England Journal of Medicine, vol. 356, no. 5, pp. 437–440, 2007. View at Publisher · View at Google Scholar · View at Scopus
  2. S. Russell, “Incretin-based therapies for type 2 diabetes mellitus: a review of direct comparisons of efficacy, safety and patient satisfaction,” International Journal of Clinical Pharmacy, vol. 35, no. 2, pp. 159–172, 2013. View at Publisher · View at Google Scholar · View at Scopus
  3. D. J. Drucker and M. A. Nauck, “The incretin system: glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors in type 2 diabetes,” The Lancet, vol. 368, no. 9548, pp. 1696–1705, 2006. View at Publisher · View at Google Scholar · View at Scopus
  4. P. R. Flatt, C. J. Bailey, and B. D. Green, “Dipeptidyl peptidase IV (DPP IV) and related molecules in type 2 diabetes,” Frontiers in Bioscience, vol. 13, no. 10, pp. 3648–3660, 2008. View at Publisher · View at Google Scholar · View at Scopus
  5. J. R. Ussher and D. J. Drucker, “Cardiovascular biology of the incretin system,” Endocrine Reviews, vol. 33, no. 2, pp. 187–215, 2012. View at Publisher · View at Google Scholar · View at Scopus
  6. S. Dalle, R. Burcelin, and P. Gourdy, “Specific actions of GLP-1 receptor agonists and DPP4 inhibitors for the treatment of pancreatic β-cell impairments in type 2 diabetes,” Cellular Signalling, vol. 25, no. 2, pp. 570–579, 2013. View at Publisher · View at Google Scholar · View at Scopus
  7. J. S. Yoon and H. W. Lee, “Understanding the cardiovascular effects of incretin,” Diabetes and Metabolism Journal, vol. 35, no. 5, pp. 437–443, 2011. View at Publisher · View at Google Scholar · View at Scopus
  8. R. Mentlein, “Dipeptidyl-peptidase IV (CD26)-role in the inactivation of regulatory peptides,” Regulatory Peptides, vol. 85, no. 1, pp. 9–24, 1999. View at Publisher · View at Google Scholar · View at Scopus
  9. M. D. Gorrell, V. Gysbers, and G. W. McCaughan, “CD26: a multifunctional integral membrane and secreted protein of activated lymphocytes,” Scandinavian Journal of Immunology, vol. 54, no. 3, pp. 249–264, 2001. View at Publisher · View at Google Scholar · View at Scopus
  10. M. Kirby, D. M. T. Yu, S. P. O'Connor, and M. D. Gorrell, “Inhibitor selectivity in the clinical application of dipeptidyl peptidase-4 inhibition,” Clinical Science, vol. 118, no. 1, pp. 31–41, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. C. L. Boland, M. DeGeeter, D. S. Nuzum, and M. Tzefos, “Evaluating second-line treatment options for type 2 diabetes: focus on secondary effects of GLP-1 agonists and DPP-4 inhibitors,” Annals of Pharmacotherapy, vol. 47, no. 4, pp. 490–505, 2013. View at Publisher · View at Google Scholar · View at Scopus
  12. O. J. Cordero, F. J. Salgado, and M. Nogueira, “On the origin of serum CD26 and its altered concentration in cancer patients,” Cancer Immunology, Immunotherapy, vol. 58, no. 11, pp. 1723–1747, 2009. View at Publisher · View at Google Scholar · View at Scopus
  13. V. K. Hopsu-Havu and G. G. Glenner, “A new dipeptide naphthylamidase hydrolyzing glycyl-prolyl-β-naphthylamide,” Histochemie, vol. 7, no. 3, pp. 197–201, 1966. View at Publisher · View at Google Scholar · View at Scopus
  14. P. Bušek, R. Malík, and A. Šedo, “Dipeptidyl peptidase IV activity and/or structure homologues (DASH) and their substrates in cancer,” International Journal of Biochemistry and Cell Biology, vol. 36, no. 3, pp. 408–421, 2004. View at Publisher · View at Google Scholar · View at Scopus
  15. P. A. Havre, M. Abe, Y. Urasaki, K. Ohnuma, C. Morimoto, and N. H. Dang, “The role of CD26/dipeptidyl peptidase IV in cancer,” Frontiers in Bioscience, vol. 13, no. 5, pp. 1634–1645, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. G. Ghersi, H. Dong, L. A. Goldstein et al., “Regulation of fibroblast migration on collagenous matrix by a cell surface peptidase complex,” The Journal of Biological Chemistry, vol. 277, no. 32, pp. 29231–29241, 2002. View at Publisher · View at Google Scholar · View at Scopus
  17. M. Chiravuri, F. Agarraberes, S. L. Mathieu, H. Lee, and B. T. Huber, “Vesicular localization and characterization of a novel post-proline-cleaving aminodipeptidase, quiescent cell proline dipeptidase,” The Journal of Immunology, vol. 165, no. 10, pp. 5695–5702, 2000. View at Publisher · View at Google Scholar · View at Scopus
  18. V. Matheeussen, Y. Waumans, W. Martinet et al., “Dipeptidyl peptidases in atherosclerosis: expression and role in macrophage differentiation, activation and apoptosis,” Basic Research in Cardiology, vol. 108, no. 3, article 350, 2013. View at Publisher · View at Google Scholar · View at Scopus
  19. H. Zhang, Y. Chen, F. M. Keane, and M. D. Gorrell, “Advances in understanding the expression and function of dipeptidyl peptidase 8 and 9,” Molecular Cancer Research, vol. 11, no. 12, pp. 1487–1496, 2013. View at Google Scholar
  20. N. C. Foeger, A. J. Norris, L. M. Wren, and J. M. Nerbonne, “Augmentation of Kv4.2-encoded currents by accessory dipeptidyl peptidase 6 and 10 subunits reflects selective cell surface Kv4.2 protein stabilization,” The Journal of Biological Chemistry, vol. 287, no. 12, pp. 9640–9650, 2012. View at Publisher · View at Google Scholar · View at Scopus
  21. G. Chang, P. Zhang, L. Ye et al., “Protective effects of sitagliptin on myocardial injury and cardiac function in an ischemia/reperfusion rat model,” European Journal of Pharmacology, vol. 718, no. 1–3, pp. 105–113, 2013. View at Publisher · View at Google Scholar
  22. L. Chaykovska, K. von Websky, J. Rahnenführer et al., “Effects of DPP-4 inhibitors on the heart in a rat model of uremic cardiomyopathy,” PLoS ONE, vol. 6, no. 11, Article ID e27861, 2011. View at Publisher · View at Google Scholar · View at Scopus
  23. T. Miyoshi, K. Nakamura, M. Yoshida et al., “Effect of vildagliptin, a dipeptidyl peptidase 4 inhibitor, on cardiac hypertrophy induced by chronic beta-adrenergic stimulation in rats,” Cardiovascular Diabetology, vol. 13, Article ID 10.1186/1475-2840-13-43, p. 43, 2014. View at Google Scholar
  24. T. Matsui, Y. Nishino, M. Takeuchi, and S. Yamagishi, “Vildagliptin blocks vascular injury in thoracic aorta of diabetic rats by suppressing advanced glycation end product-receptor axis,” Pharmacological Research, vol. 63, no. 5, pp. 383–388, 2011. View at Publisher · View at Google Scholar · View at Scopus
  25. R. P. Mason, R. F. Jacob, R. Kubant, A. Ciszewski, J. J. Corbalan, and T. Malinski, “Dipeptidyl peptidase-4 inhibition with saxagliptin enhanced nitric oxide release and reduced blood pressure and sICAM-1 levels in hypertensive rats,” Journal of Cardiovascular Pharmacology, vol. 60, no. 5, pp. 467–473, 2012. View at Publisher · View at Google Scholar · View at Scopus
  26. N. N. Ta, C. A. Schuyler, Y. Li, M. F. Lopes-Virella, and Y. Huang, “DPP-4 (CD26) inhibitor alogliptin inhibits atherosclerosis in diabetic apolipoprotein E-deficient mice,” Journal of Cardiovascular Pharmacology, vol. 58, no. 2, pp. 157–166, 2011. View at Publisher · View at Google Scholar · View at Scopus
  27. N. Ervinna, T. Mita, E. Yasunari et al., “Anagliptin, a DPP-4 inhibitor, suppresses proliferation of vascular smooth muscles and monocyte inflammatory reaction and attenuates atherosclerosis in male apo E-deficient mice,” Endocrinology, vol. 154, no. 3, pp. 1260–1270, 2013. View at Publisher · View at Google Scholar · View at Scopus
  28. G. P. Fadini, E. Boscaro, M. Albiero et al., “The oral dipeptidyl peptidase-4 inhibitor sitagliptin increases circulating endothelial progenitor cells in patients with type 2 diabetes: Possible role of stromal-derived factor-1α,” Diabetes Care, vol. 33, no. 7, pp. 1607–1609, 2010. View at Publisher · View at Google Scholar · View at Scopus
  29. V. Darsalia, H. Ortsäter, A. Olverling et al., “The DPP-4 inhibitor linagliptin counteracts stroke in the normal and diabetic mouse brain: a comparison with glimepiride,” Diabetes, vol. 62, no. 4, pp. 1289–1296, 2013. View at Publisher · View at Google Scholar · View at Scopus
  30. L. Chaykovska, M. L. Alter, K. von Websky et al., “Effects of telmisartan and linagliptin when used in combination on blood pressure and oxidative stress in rats with 2-kidney-1-clip hypertension,” Journal of Hypertension, vol. 31, no. 11, pp. 2290–2298, 2013. View at Publisher · View at Google Scholar
  31. A. Marney, S. Kunchakarra, L. Byrne, and N. J. Brown, “Interactive hemodynamic effects of dipeptidyl peptidase-IV inhibition and angiotensin-converting enzyme inhibition in humans,” Hypertension, vol. 56, no. 4, pp. 728–733, 2010. View at Publisher · View at Google Scholar · View at Scopus
  32. P. A. J. Krijnen, N. E. Hahn, I. Kholová et al., “Loss of DPP4 activity is related to a prothrombogenic status of endothelial cells: implications for the coronary microvasculature of myocardial infarction patients,” Basic Research in Cardiology, vol. 107, no. 1, article 233, 2012. View at Publisher · View at Google Scholar · View at Scopus
  33. P. Hoffmann, P. Bentley, P. Sahota et al., “Vascular origin of vildagliptin-induced skin effects in cynomolgus monkeys: pathomechanistic role of peripheral sympathetic system and neuropeptide Y,” Toxicologic Pathology, vol. 42, no. 4, pp. 684–695, 2014. View at Publisher · View at Google Scholar
  34. A. C. C. Girardi, L. E. Fukuda, L. V. Rossoni, G. Malnic, and N. A. Rebouças, “Dipeptidyl peptidase IV inhibition downregulates Na+-H+ exchanger NHE3 in rat renal proximal tubule,” The American Journal of Physiology—Renal Physiology, vol. 294, no. 2, pp. F414–F422, 2008. View at Publisher · View at Google Scholar · View at Scopus
  35. M. L. Alter, I. M. Ott, K. Von Websky et al., “DPP-4 inhibition on top of angiotensin receptor blockade offers a new therapeutic approach for diabetic nephropathy,” Kidney and Blood Pressure Research, vol. 36, no. 1, pp. 119–130, 2012. View at Publisher · View at Google Scholar · View at Scopus
  36. E. K. Jackson, S. J. Kochanek, and D. G. Gillespie, “Dipeptidyl peptidase IV regulates proliferation of preglomerular vascular smooth muscle and mesangial cells,” Hypertension, vol. 60, no. 3, pp. 757–764, 2012. View at Publisher · View at Google Scholar · View at Scopus
  37. M. Kern, N. Klöting, H. G. Niessen et al., “Linagliptin improves insulin sensitivity and hepatic steatosis in diet-induced obesity,” PLoS ONE, vol. 7, no. 6, Article ID e38744, 2012. View at Publisher · View at Google Scholar · View at Scopus
  38. M. Boschmann, S. Engeli, K. Dobberstein et al., “Dipeptidyl-peptidase-IV inhibition augments postprandial lipid mobilization and oxidation in type 2 diabetic patients,” Journal of Clinical Endocrinology and Metabolism, vol. 94, no. 3, pp. 846–852, 2009. View at Publisher · View at Google Scholar · View at Scopus
  39. E. K. Jackson and Z. Mi, “Sitagliptin augments sympathetic enhancement of the renovascular effects of angiotensin II in genetic hypertension,” Hypertension, vol. 51, no. 6, pp. 1637–1642, 2008. View at Publisher · View at Google Scholar · View at Scopus
  40. N. N. Ta, Y. Li, C. A. Schuyler, M. F. Lopes-Virella, and Y. Huang, “DPP-4 (CD26) inhibitor alogliptin inhibits TLR4-mediated ERK activation and ERK-dependent MMP-1 expression by U937 histiocytes,” Atherosclerosis, vol. 213, no. 2, pp. 429–435, 2010. View at Publisher · View at Google Scholar · View at Scopus
  41. D. Reinhold, U. Bank, F. Buhling et al., “Inhibitors of dipeptidyl peptidase IV (DP IV, CD26) specifically suppress proliferation and modulate cytokine production of strongly CD26 expressing U937 cells,” Immunobiology, vol. 192, no. 1-2, pp. 121–136, 1994. View at Publisher · View at Google Scholar · View at Scopus
  42. A. Makdissi, H. Ghanim, M. Vora et al., “Sitagliptin exerts an antinflammatory action,” Journal of Clinical Endocrinology and Metabolism, vol. 97, no. 9, pp. 3333–3341, 2012. View at Publisher · View at Google Scholar · View at Scopus
  43. W. Jungraithmayr, I. De Meester, V. Matheeussen et al., “Inhibition of CD26/DPP IV attenuates ischemia/reperfusion injury in orthotopic mouse lung transplants: the pivotal role of vasoactive intestinal peptide,” Peptides, vol. 31, no. 4, pp. 585–591, 2010. View at Publisher · View at Google Scholar · View at Scopus
  44. A. K. Gupta, A. K. Verma, J. Kailashiya, S. K. Singh, and N. Kumar, “Sitagliptin: anti-platelet effect in diabetes and healthy volunteers,” Platelets, vol. 23, no. 8, pp. 565–570, 2012. View at Publisher · View at Google Scholar · View at Scopus
  45. K. W. Christopherson II, G. Hangoc, C. R. Mantel, and H. E. Broxmeyer, “Modulation of hematopoietic stem cell homing and engraftment by CD26,” Science, vol. 305, no. 5686, pp. 1000–1003, 2004. View at Publisher · View at Google Scholar · View at Scopus
  46. H. E. Broxmeyer, J. Hoggatt, H. A. O'leary et al., “Dipeptidylpeptidase 4 negatively regulates colony-stimulating factor activity and stress hematopoiesis,” Nature Medicine, vol. 18, no. 12, pp. 1786–1796, 2012. View at Publisher · View at Google Scholar · View at Scopus
  47. C. Tiruppathi, Y. Miyamoto, V. Ganapathy, R. A. Roesel, G. M. Whitford, and F. H. Leibach, “Hydrolysis and transport of proline-containing peptides in renal brush-border membrane vesicles from dipeptidyl peptidase IV-positive and dipeptidyl peptidase IV-negative rat strains,” Journal of Biological Chemistry, vol. 265, no. 3, pp. 1476–1483, 1990. View at Google Scholar · View at Scopus
  48. E. Boonacker and C. J. F. Van Noorden, “The multifunctional or moonlighting protein CD26/DPPIV,” European Journal of Cell Biology, vol. 82, no. 2, pp. 53–73, 2003. View at Publisher · View at Google Scholar · View at Scopus
  49. F. M. Keane, T. W. Yao, S. Seelk et al., “Quantitation of fibroblast activation protein (FAP)-specific protease activity in mouse, baboon and human fluids and organs,” FEBS Open Bio, vol. 4, pp. 43–54, 2014. View at Google Scholar
  50. D. T. Dang, S. Y. Chun, K. Burkitt et al., “Hypoxia-inducible factor-1 target genes as indicators of tumor vessel response to vascular endothelial growth factor inhibition,” Cancer Research, vol. 68, no. 6, pp. 1872–1880, 2008. View at Publisher · View at Google Scholar · View at Scopus
  51. G. P. Fadini and A. Avogaro, “Cardiovascular effects of DPP-4 inhibition: beyond GLP-1,” Vascular Pharmacology, vol. 55, no. 1–3, pp. 10–16, 2011. View at Publisher · View at Google Scholar · View at Scopus
  52. B. Bauvois, M. Djavaheri-Mergny, D. Rouillard, J. Dumont, and J. Wietzerbin, “Regulation of CD26/DPPIV gene expression by interferons and retinoic acid in tumor B cells,” Oncogene, vol. 19, no. 2, pp. 265–272, 2000. View at Publisher · View at Google Scholar · View at Scopus
  53. S. K. Bohm, J. R. Gum Jr., R. H. Erickson, J. W. Hicks, and Y. S. Kim, “Human dipeptidyl peptidase IV gene promoter: tissue-specific regulation from a TATA-less GC-rich sequence characteristic of a housekeeping gene promoter,” Biochemical Journal, vol. 311, no. 3, pp. 835–843, 1995. View at Google Scholar · View at Scopus
  54. Y. Suzuki, R. H. Erickson, A. Sedlmayer, S.-K. Chang, Y. Ikehara, and Y. S. Kim, “Dietary regulation of rat intestinal angiotensin-converting enzyme and dipeptidyl peptidase IV,” The American Journal of Physiology—Gastrointestinal and Liver Physiology, vol. 264, no. 6, pp. G1153–G1159, 1993. View at Google Scholar · View at Scopus
  55. N. Gu, M. Tsuda, T. Matsunaga et al., “Glucose regulation of dipeptidyl peptidase IV gene expression is mediated by hepatocyte nuclear factor-1α in epithelial intestinal cells,” Clinical and Experimental Pharmacology and Physiology, vol. 35, no. 12, pp. 1433–1439, 2008. View at Publisher · View at Google Scholar · View at Scopus
  56. S. A. Lee, Y. R. Kim, E. J. Yang et al., “CD26/DPP4 levels in peripheral blood and T cells in patients with type 2 diabetes mellitus,” The Journal of Clinical Endocrinology and Metabolism, vol. 98, no. 6, pp. 2553–2561, 2013. View at Publisher · View at Google Scholar · View at Scopus
  57. J. Ryskjær, C. F. Deacon, R. D. Carr et al., “Plasma dipeptidyl peptidase-IV activity in patients with type-2 diabetes mellitus correlates positively with HbAlc levels, but is not acutely affected by food intake,” European Journal of Endocrinology, vol. 155, no. 3, pp. 485–493, 2006. View at Publisher · View at Google Scholar · View at Scopus
  58. S. K. Malin, H. Huang, A. Mulya, S. R. Kashyap, and J. P. Kirwan, “Lower dipeptidyl peptidase-4 following exercise training plus weight loss is related to increased insulin sensitivity in adults with metabolic syndrome,” Peptides, vol. 47, no. 1, pp. 142–147, 2013. View at Publisher · View at Google Scholar
  59. J. M. Lenhard, D. K. Croom, and D. T. Minnick, “Reduced serum dipeptidyl peptidase-IV after metformin and pioglitazone treatments,” Biochemical and Biophysical Research Communications, vol. 324, no. 1, pp. 92–97, 2004. View at Publisher · View at Google Scholar · View at Scopus
  60. A. E. Mast, D. A. Higuchi, Z. Huang, I. Warshawsky, A. L. Schwartz, and G. J. Broze Jr., “Glypican-3 is a binding protein on the HepG2 cell surface for tissue factor pathway inhibitor,” Biochemical Journal, vol. 327, no. 2, pp. 577–583, 1997. View at Google Scholar · View at Scopus
  61. J. Davoodi, J. Kelly, N. H. Gendron, and A. E. MacKenzie, “The Simpson-Golabi-Behmel syndrome causative Glypican-3, binds to and inhibits the dipeptidyl peptidase activity of CD26,” Proteomics, vol. 7, no. 13, pp. 2300–2310, 2007. View at Publisher · View at Google Scholar · View at Scopus
  62. S. Khurana, L. Margamuljana, C. Joseph, S. Schouteden, S. M. Buckley, and C. M. Verfaillie, “Glypican-3-mediated inhibition of CD26 by TFPI: a novel mechanism in hematopoietic stem cell homing and maintenance.,” Blood, vol. 121, no. 14, pp. 2587–2595, 2013. View at Publisher · View at Google Scholar · View at Scopus
  63. D. Lamers, S. Famulla, N. Wronkowitz et al., “Dipeptidyl peptidase 4 is a novel adipokine potentially linking obesity to the metabolic syndrome,” Diabetes, vol. 60, no. 7, pp. 1917–1925, 2011. View at Publisher · View at Google Scholar · View at Scopus
  64. Y. Ishibashi, T. Matsui, S. Maeda, Y. Higashimoto, and S.-I. Yamagishi, “Advanced glycation end products evoke endothelial cell damage by stimulating soluble dipeptidyl peptidase-4 production and its interaction with mannose 6-phosphate/insulin-like growth factor II receptor,” Cardiovascular Diabetology, vol. 12, no. 1, article 125, 9 pages, 2013. View at Publisher · View at Google Scholar · View at Scopus
  65. J. S. Duke-Cohan, C. Morimoto, J. A. Rocker, and S. F. Schlossman, “A novel form of dipeptidylpeptidase IV found in human serum. Isolation, characterization, and comparison with T lymphocyte membrane dipeptidylpeptidase IV (CD26),” Journal of Biological Chemistry, vol. 270, no. 23, pp. 14107–14114, 1995. View at Publisher · View at Google Scholar · View at Scopus
  66. N. Busso, N. Wagtmann, C. Herling et al., “Circulating CD26 is negatively associated with inflammation in human and experimental arthritis,” The American Journal of Pathology, vol. 166, no. 2, pp. 433–442, 2005. View at Publisher · View at Google Scholar · View at Scopus
  67. M. Hildebrandt, M. Rose, J. Rüter, A. Salama, H. Mönnikes, and B. F. Klapp, “Dipeptidyl peptidase IV (DP IV, CD26) in patients with inflammatory bowel disease,” Scandinavian Journal of Gastroenterology, vol. 36, no. 10, pp. 1067–1072, 2001. View at Publisher · View at Google Scholar · View at Scopus
  68. K. Abe, L. Kuo, and Z. Zukowska, “Neuropeptide Y is a mediator of chronic vascular and metabolic maladaptations to stress and hypernutrition,” Experimental Biology and Medicine, vol. 235, no. 10, pp. 1179–1184, 2010. View at Publisher · View at Google Scholar · View at Scopus
  69. X. Pedragosa-Badia, J. Stichel, and A. G. Beck-Sickinger, “Neuropeptide Y receptors: how to get subtype selectivity,” Frontiers in Endocrinology, vol. 4, no. 5, pp. 1–13, 2013. View at Google Scholar
  70. L. E. Kuo, J. B. Kitlinska, J. U. Tilan et al., “Neuropeptide Y acts directly in the periphery on fat tissue and mediates stress-induced obesity and metabolic syndrome,” Nature Medicine, vol. 13, no. 7, pp. 803–811, 2007. View at Publisher · View at Google Scholar · View at Scopus
  71. C. Huang, C. Shih, N. Tsao et al., “Dipeptidyl peptidase-4 inhibitor improves neovascularization by increasing circulating endothelial progenitor cells,” British Journal of Pharmacology, vol. 167, no. 7, pp. 1506–1519, 2012. View at Publisher · View at Google Scholar · View at Scopus
  72. K. Ohnuma, N. Takahashi, T. Yamochi, O. Hosono, N. H. Dang, and C. Morimoto, “Role of CD26/dipeptidyl peptidase IV in human T cell activation and function,” Frontiers in Bioscience, vol. 13, no. 6, pp. 2299–2310, 2008. View at Publisher · View at Google Scholar · View at Scopus
  73. T. Ohtsuki, H. Tsuda, and C. Morimoto, “Good or evil: CD26 and HIV infection,” Journal of Dermatological Science, vol. 22, no. 3, pp. 152–160, 2000. View at Publisher · View at Google Scholar · View at Scopus
  74. T. Ishii, K. Ohnuma, A. Murakami et al., “CD26-mediated signaling for T cell activation occurs in lipid rafts through its association with CD45RO,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 21, pp. 12138–12143, 2001. View at Publisher · View at Google Scholar · View at Scopus
  75. K. Ohnuma, M. Uchiyama, T. Yamochi et al., “Caveolin-1 triggers T-cell activation via CD26 in association with CARMA1,” Journal of Biological Chemistry, vol. 282, no. 13, pp. 10117–10131, 2007. View at Publisher · View at Google Scholar · View at Scopus
  76. G. R. Flentke, E. Munoz, B. T. Huber, A. G. Plaut, C. A. Kettner, and W. W. Bachovchin, “Inhibition of dipeptidyl aminopeptidase IV (DP-IV) by Xaa-boroPro dipeptides and use of these inhibitors to examine the role of DP-IV in T-cell function,” Proceedings of the National Academy of Sciences of the United States of America, vol. 88, no. 4, pp. 1556–1559, 1991. View at Publisher · View at Google Scholar · View at Scopus
  77. S. Yan, D. Marguet, J. Dobers, W. Reutter, and H. Fan, “Deficiency of CD26 results in a change of cytokine and immunoglobin secretion after stimulation by pokeweed mitogen,” European Journal of Immunology, vol. 33, no. 6, pp. 1519–1527, 2003. View at Publisher · View at Google Scholar · View at Scopus
  78. G. R. Lankas, B. Leiting, R. S. Roy et al., “Dipeptidyl peptidase IV inhibition for the treatment of type 2 diabetes: potential importance of selectivity over dipeptidyl peptidases 8 and 9,” Diabetes, vol. 54, no. 10, pp. 2988–2994, 2005. View at Publisher · View at Google Scholar · View at Scopus
  79. Z. Shah, T. Kampfrath, J. A. Deiuliis et al., “Long-term dipeptidyl-peptidase 4 inhibition reduces atherosclerosis and inflammation via effects on monocyte recruitment and chemotaxis,” Circulation, vol. 124, no. 21, pp. 2338–2349, 2011. View at Publisher · View at Google Scholar · View at Scopus
  80. J. Zhong, X. Rao, and S. Rajagopalan, “An emerging role of dipeptidyl peptidase 4 (DPP4) beyond glucose control: potential implications in cardiovascular disease,” Atherosclerosis, vol. 226, no. 2, pp. 305–314, 2013. View at Publisher · View at Google Scholar · View at Scopus
  81. F. Vittone, A. Liberman, D. Vasic et al., “Sitagliptin reduces plaque macrophage content and stabilises arteriosclerotic lesions in Apoe-/- mice,” Diabetologia, vol. 55, no. 8, pp. 2267–2275, 2012. View at Publisher · View at Google Scholar · View at Scopus
  82. N. Satoh-Asahara, Y. Sasaki, H. Wada et al., “A dipeptidyl peptidase-4 inhibitor, sitagliptin, exerts anti-inflammatory effects in type 2 diabetic patients,” Metabolism: Clinical and Experimental, vol. 62, no. 3, pp. 347–351, 2013. View at Publisher · View at Google Scholar · View at Scopus
  83. P. C. van Poppel, M. S. Gresnigt, P. Smits, M. G. Netea, and C. J. Tack, “The dipeptidyl peptidase-4 inhibitor vildagliptin does not affect ex vivo cytokine response and lymphocyte function in patients with type 2 diabetes mellitus,” Diabetes Research and Clinical Practice, vol. 103, no. 3, pp. 395–401, 2014. View at Google Scholar
  84. R. Mentlein and E. Heymann, “Dipeptidyl peptidase IV inhibits the polymerization of fibrin monomers,” Archives of Biochemistry and Biophysics, vol. 217, no. 2, pp. 748–750, 1982. View at Publisher · View at Google Scholar · View at Scopus
  85. F. Briand, Q. Thieblemont, R. Burcelin, and T. Sulpice, “Sitagliptin promotes macrophage-to-faeces reverse cholesterol transport through reduced intestinal cholesterol absorption in obese insulin resistant CETP-apoB100 transgenic mice,” Diabetes, Obesity and Metabolism, vol. 14, no. 7, pp. 662–665, 2012. View at Publisher · View at Google Scholar · View at Scopus
  86. G. Flock, L. L. Baggio, C. Longuet, and D. J. Drucker, “Incretin receptors for glucagon-like peptide 1 and glucose-dependent insulinotropic polypeptide are essential for the sustained metabolic actions of vildagliptin in mice,” Diabetes, vol. 56, no. 12, pp. 3006–3013, 2007. View at Publisher · View at Google Scholar · View at Scopus
  87. J. Hsieh, C. Longuet, C. L. Baker et al., “The glucagon-like peptide 1 receptor is essential for postprandial lipoprotein synthesis and secretion in hamsters and mice,” Diabetologia, vol. 53, no. 3, pp. 552–561, 2010. View at Publisher · View at Google Scholar · View at Scopus
  88. M. Monami, C. Lamanna, C. M. Desideri, and E. Mannucci, “DPP-4 inhibitors and lipids: systematic review and meta-analysis,” Advances in Therapy, vol. 29, no. 1, pp. 14–25, 2012. View at Publisher · View at Google Scholar · View at Scopus
  89. E. Y. Choe, Y. Cho, Y. Choi et al., “The effect of DPP-4 inhibitors on metabolic parameters in patients with type 2 diabetes,” Diabetes and Metabolism Journal, vol. 38, no. 3, pp. 211–219, 2014. View at Google Scholar
  90. T. Rieg, M. Gerasimova, F. Murray et al., “Natriuretic effect by exendin-4, but not the DPP-4 inhibitor alogliptin, is mediated via the GLP-1 receptor and preserved in obese type 2 diabetic mice,” The American Journal of Physiology - Renal Physiology, vol. 303, no. 7, pp. F963–F971, 2012. View at Publisher · View at Google Scholar · View at Scopus
  91. A. Cameron-Vendrig, D. Mundil, and M. Husain, “Antiatherothrombotic effects of dipeptidyl peptidase inhibitors,” Current Atherosclerosis Reports, vol. 16, no. 5, p. 408, 2014. View at Google Scholar
  92. P. C. M. van Poppel, M. G. Netea, P. Smits, and C. J. Tack, “Vildagliptin improves endothelium-dependent vasodilatation in type 2 diabetes,” Diabetes Care, vol. 34, no. 9, pp. 2072–2077, 2011. View at Publisher · View at Google Scholar · View at Scopus
  93. C. Hawkes and S. Kar, “The insulin-like growth factor-II/mannose-6-phosphate receptor: Structure, distribution and function in the central nervous system,” Brain Research Reviews, vol. 44, no. 2-3, pp. 117–140, 2004. View at Publisher · View at Google Scholar · View at Scopus
  94. S. Lim, S. H. Choi, H. Shin et al., “Effect of a dipeptidyl peptidase-iv inhibitor, des-fluoro-sitagliptin, on neointimal formation after balloon injury in rats,” PLoS ONE, vol. 7, no. 4, Article ID e35007, 2012. View at Publisher · View at Google Scholar · View at Scopus
  95. K. Kanasaki, S. Shi, M. Kanasaki et al., “Linagliptin-mediated DPP-4 inhibition ameliorates kidney fibrosis in streptozotocin-induced diabetic mice by inhibiting endothelial-to-mesenchymal transition in a therapeutic regimen,” Diabetes, vol. 63, no. 6, pp. 2120–2031, 2014. View at Google Scholar
  96. M. Monami, B. Ahrén, I. Dicembrini, and E. Mannucci, “Dipeptidyl peptidase-4 inhibitors and cardiovascular risk: ameta-analysis of randomized clinical trials,” Diabetes, Obesity and Metabolism, vol. 15, no. 2, pp. 112–120, 2013. View at Publisher · View at Google Scholar · View at Scopus
  97. S. Wu, I. Hopper, M. Skiba, and H. Krum, “Dipeptidyl peptidase-4 inhibitors and cardiovascular outcomes: meta-analysis of randomized clinical trials with 55,141 participants,” Cardiovascular Therapeutics, vol. 32, no. 4, pp. 147–158, 2014. View at Publisher · View at Google Scholar
  98. W. B. White, C. P. Cannon, S. R. Heller et al., “Alogliptin after acute coronary syndrome in patients with type 2 diabetes,” The New England Journal of Medicine, vol. 369, no. 14, pp. 1327–1335, 2013. View at Google Scholar
  99. B. M. Scirica, D. L. Bhatt, E. Braunwald et al., “Saxagliptin and cardiovascular outcomes in patients with type 2 diabetes mellitus,” The New England Journal of Medicine, vol. 369, no. 14, pp. 1317–1326, 2013. View at Google Scholar
  100. J. K. Devin, M. Pretorius, H. Nian, C. Yu, F. T. T. Billings, and N. J. Brown, “Substance p increases sympathetic activity during combined Angiotensin-converting enzyme and dipeptidyl peptidase-4 inhibition,” Hypertension, vol. 63, no. 5, pp. 951–957, 2014. View at Google Scholar