Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2014, Article ID 371809, 7 pages
http://dx.doi.org/10.1155/2014/371809
Review Article

In Silico Modeling of the Immune System: Cellular and Molecular Scale Approaches

1Department of Drug Sciences, University of Catania, V.le A. Doria 6, 95125 Catania, Italy
2Department of Mathematics and Computer Science, University of Catania, V.le A. Doria 6, 95125 Catania, Italy

Received 27 February 2014; Accepted 5 March 2014; Published 6 April 2014

Academic Editor: Filippo Castiglione

Copyright © 2014 Mariagrazia Belfiore et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. L. Woelke, M. S. Murgueitio, and R. Preissner, “Theoretical modeling techniques and their impact on tumor immunology,” Clinical and Developmental Immunology, vol. 2010, Article ID 271794, 11 pages, 2010. View at Publisher · View at Google Scholar
  2. J. S. Patel, A. Berteotti, S. Ronsisvalle, W. Rocchia, and A. Cavalli, “Steered molecular dynamics simulations for studying protein-ligand interaction in cyclin-dependent kinase 5,” Journal of Chemical Information and Modeling, vol. 54, no. 2, pp. 470–480, 2014. View at Publisher · View at Google Scholar
  3. M. Meier-Schellersheim, I. D. C. Fraser, and F. Klauschen, “Multiscale modeling for biologists,” Wiley Interdisciplinary Reviews: Systems Biology and Medicine, vol. 1, pp. 4–14, 2009. View at Publisher · View at Google Scholar
  4. J. Walpole, J. A. Papin, and S. M. Peirce, “Multiscale computational models of complex biological systems,” Annual Review of Biomedical Engineering, vol. 15, pp. 137–154, 2013. View at Publisher · View at Google Scholar
  5. S. Motta and F. Pappalardo, “Mathematical modeling of biological system,” Briefings in Bioinformatics, vol. 14, no. 4, pp. 411–422, 2012. View at Google Scholar
  6. F. Castiglione and P. Paci, “Criticality of timing for anti-HIV therapy initiation,” PLoS ONE, vol. 5, no. 12, Article ID e15294, 2010. View at Google Scholar
  7. F. Pappalardo, E. Mastriani, P. L. Lollini, and S. Motta, “Genetic algorithm against cancer,” in Proceedings of the 6th International Workshop on Fuzzy Logic and Applications (WILF '05), vol. 3849 of Lecture Notes in Computer Science, pp. 223–228, 2006.
  8. D. Alemani, F. Pappalardo, M. Pennisi, S. Motta, and V. Brusic, “Combining cellular automata and lattice Boltzmann method to model multiscale avascular tumor growth coupled with nutrient diffusion and immune competition,” Journal of Immunological Methods, vol. 376, no. 1-2, pp. 55–68, 2012. View at Publisher · View at Google Scholar · View at Scopus
  9. M. Pennisi, F. Pappalardo, A. Palladini et al., “Modeling the competition between lung metastases and the immune system using agents,” BMC Bioinformatics, vol. 11, no. 7, article S13, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. F. Pappalardo, S. Musumeci, and S. Motta, “Modeling immune system control of atherogenesis,” Bioinformatics, vol. 24, no. 15, pp. 1715–1721, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. M. Pennisi, A. Rajput, L. Toldo, and F. Pappalardo, “Agent based modeling of Treg-Teff cross regulation in relapsing-remitting multiple sclerosis,” BMC Bioinformatics, vol. 14, supplement 16, article S9, 2013. View at Google Scholar
  12. F. Carafoli, N. J. Clout, and E. Hohenester, “Crystal structure of the LG1-3 region of the laminin α2 chain,” The Journal of Biological Chemistry, vol. 284, no. 34, pp. 22786–27792, 2009. View at Publisher · View at Google Scholar · View at Scopus
  13. F. Pappalardo, M. Pennisi, F. Castiglione, and S. Motta, “Vaccine protocols optimization: in silico experiences,” Biotechnology Advances, vol. 28, no. 1, pp. 82–93, 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. M. M. Olsen and H. T. Siegelmann, “Multiscale agent-based model of tumor angiogenesis,” Procedia Computer Science, vol. 18, pp. 1016–1025, 2013. View at Publisher · View at Google Scholar
  15. F. Pappalardo, F. Chiacchio, and S. Motta, “Cancer vaccines: state of the art of the computational modeling approaches,” BioMed Research International, vol. 2013, Article ID 106407, 6 pages, 2013. View at Publisher · View at Google Scholar
  16. G. Chuang, J. C. Boyington, M. Gordon Joyce et al., “Computational prediction of N-linked glycosylation incorporating structural properties and patterns,” Bioinformatics, vol. 28, no. 17, pp. 2249–2255, 2012. View at Google Scholar