Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2014 (2014), Article ID 379847, 8 pages
Research Article

Macrophage Capping Protein CapG Is a Putative Oncogene Involved in Migration and Invasiveness in Ovarian Carcinoma

1Department of Nephrology, University Hospital Duesseldorf, Heinrich-Heine University, 40225 Duesseldorf, Germany
2Department of Obstetrics and Gynecology, University Hospital Duesseldorf, Heinrich-Heine University, 40225 Duesseldorf, Germany
3Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
4Institute of Human Genetics, University Hospital Duesseldorf, Heinrich-Heine University, 40225 Duesseldorf, Germany

Received 17 December 2013; Accepted 11 February 2014; Published 2 April 2014

Academic Editor: Peter A. Fasching

Copyright © 2014 J. Glaser et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


The actin binding protein CapG modulates cell motility by interacting with the cytoskeleton. CapG is associated with tumor progression in different nongynecologic tumor entities and overexpression in breast cancer cell lines correlates with a more invasive phenotype in vitro. Here, we report a significant CapG overexpression in 18/47 (38%) of ovarian carcinomas (OC) analyzed by qRealTime-PCR analyses. Functional analyses in OC cell lines through siRNA mediated CapG knockdown and CapG overexpression showed CapG-dependent cell migration and invasiveness. A single nucleotide polymorphism rs6886 inside the CapG gene was identified, affecting a CapG phosphorylation site and thus potentially modifying CapG function. The minor allele frequency (MAF) of SNP rs6886 (c.1004A/G) was higher and the homozygous (A/A, His335) genotype was significantly more prevalent in patients with fallopian tube carcinomas (50%) as in controls (10%). With OC being one of the most lethal cancer diseases, the detection of novel biomarkers such as CapG could reveal new diagnostic and therapeutic targets. Moreover, in-depth analyses of SNP rs6886 related to FTC and OC will contribute to a better understanding of carcinogenesis and progression of OC.