Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2014, Article ID 380531, 10 pages
http://dx.doi.org/10.1155/2014/380531
Research Article

Abnormal Functional Resting-State Networks in ADHD: Graph Theory and Pattern Recognition Analysis of fMRI Data

1Center of Mathematics, Computation and Cognition, Universidade Federal do ABC, Avenida dos Estados 5001, 09210-580 Santo Andre, SP, Brazil
2NIF-LIM44, Institute of Radiology, Hospital das Clinicas, University of Sao Paulo, Avenida Dr. Enéas de Carvalho Aguiar, 05403-900 Sao Paulo, SP, Brazil
3Department of Psychiatry, Federal University of Rio Grande do Sul, Rua Ramiro Barcelos 2350, 90035-903 Porto Alegre, RS, Brazil
4National Institute of Developmental Psychiatry for Children and Adolescents, Brazil

Received 16 May 2014; Revised 1 August 2014; Accepted 1 August 2014; Published 31 August 2014

Academic Editor: Yihong Yang

Copyright © 2014 Anderson dos Santos Siqueira et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. G. Polanczyk, M. S. De Lima, B. L. Horta, J. Biederman, and L. A. Rohde, “The worldwide prevalence of ADHD: a systematic review and metaregression analysis,” American Journal of Psychiatry, vol. 164, no. 6, pp. 942–948, 2007. View at Publisher · View at Google Scholar · View at Scopus
  2. American Psychiatric Association, Diagnostic and Statistical Manual of Mental Disorders, American Psychiatric Publishing, Arlington, Va, USA, 2013.
  3. B. N. Cuthbert and T. R. Insel, “Toward the future of psychiatric diagnosis: the seven pillars of RDoC,” BMC Medicine, vol. 11, no. 1, article 126, 2013. View at Publisher · View at Google Scholar · View at Scopus
  4. T. Insel, B. Cuthbert, M. Garvey et al., “Research Domain Criteria (RDoC): toward a new classification framework for research on mental disorders,” American Journal of Psychiatry, vol. 167, no. 7, pp. 748–751, 2010. View at Publisher · View at Google Scholar · View at Scopus
  5. D. E. J. Linden, “The challenges and promise of neuroimaging in psychiatry,” Neuron, vol. 73, no. 1, pp. 8–22, 2012. View at Publisher · View at Google Scholar · View at Scopus
  6. E. Bullmore and O. Sporns, “Complex brain networks: graph theoretical analysis of structural and functional systems,” Nature Reviews Neuroscience, vol. 10, no. 3, pp. 186–198, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. M. Rubinov and O. Sporns, “Complex network measures of brain connectivity: Uses and interpretations,” NeuroImage, vol. 52, no. 3, pp. 1059–1069, 2010. View at Publisher · View at Google Scholar · View at Scopus
  8. J. S. Damoiseaux, S. A. R. B. Rombouts, F. Barkhof et al., “Consistent resting-state networks across healthy subjects,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 37, pp. 13848–13853, 2006. View at Publisher · View at Google Scholar · View at Scopus
  9. A. de La Fuente, S. Xia, C. Branch, and X. Li, “A review of attention-deficit/hyperactivity disorder from the perspective of brain networks,” Frontiers in Human Neuroscience, vol. 7, article 192, 2013. View at Publisher · View at Google Scholar · View at Scopus
  10. M. Greicius, “Resting-state functional connectivity in neuropsychiatric disorders,” Current Opinion in Neurology, vol. 21, no. 4, pp. 424–430, 2008. View at Google Scholar · View at Scopus
  11. B. Biswal, F. Z. Yetkin, V. M. Haughton, and J. S. Hyde, “Functional connectivity in the motor cortex of resting human brain using echo-planar MRI,” Magnetic Resonance in Medicine, vol. 34, no. 4, pp. 537–541, 1995. View at Publisher · View at Google Scholar · View at Scopus
  12. R. L. Buckner, J. R. Andrews-Hanna, and D. L. Schacter, “The brain's default network: anatomy, function, and relevance to disease,” Annals of the New York Academy of Sciences, vol. 1124, pp. 1–38, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. S. Klöppel, A. Abdulkadir, C. R. Jack Jr., N. Koutsouleris, J. Mourão-Miranda, and P. Vemuri, “Diagnostic neuroimaging across diseases,” NeuroImage, vol. 61, no. 2, pp. 457–463, 2012. View at Publisher · View at Google Scholar · View at Scopus
  14. V. N. Vapnik, The Statistical Learning Theory, Springer, 1998.
  15. HD-Consortium, “The ADHD-200 consortium: a model to advance the translational potential of neuroimaging in clinical neuroscience,” Frontiers in Systems Neuroscience, vol. 6, article 62, 2012. View at Google Scholar
  16. R. C. Craddock, G. A. James, P. E. Holtzheimer, X. P. Hu, and H. S. Mayberg, “A whole brain fMRI atlas generated via spatially constrained spectral clustering,” Human Brain Mapping, vol. 33, no. 8, pp. 1914–1928, 2012. View at Publisher · View at Google Scholar · View at Scopus
  17. J. D. Power, D. A. Fair, B. L. Schlaggar, and S. E. Petersen, “The development of Human Functional Brain Networks,” Neuron, vol. 67, no. 5, pp. 735–748, 2010. View at Publisher · View at Google Scholar · View at Scopus
  18. L. C. Freeman, “Centrality in social networks conceptual clarification,” Social Networks, vol. 1, no. 3, pp. 215–239, 1979. View at Publisher · View at Google Scholar · View at Scopus
  19. L. C. Freeman, “A set of measures of centrality based on betweenness,” Sociometry, vol. 40, no. 1, pp. 35–41, 1977. View at Google Scholar
  20. R. S. Burt, “Structural holes and good ideas,” The American Journal of Sociology, vol. 110, no. 2, pp. 349–399, 2004. View at Publisher · View at Google Scholar · View at Scopus
  21. J. Mourão-Miranda, A. L. W. Bokde, C. Born, H. Hampel, and M. Stetter, “Classifying brain states and determining the discriminating activation patterns: Support Vector Machine on functional MRI data,” NeuroImage, vol. 28, no. 4, pp. 980–995, 2005. View at Publisher · View at Google Scholar · View at Scopus
  22. J. R. Sato, A. Fujita, C. E. Thomaz et al., “Evaluating SVM and MLDA in the extraction of discriminant regions for mental state prediction,” NeuroImage, vol. 46, no. 1, pp. 105–114, 2009. View at Publisher · View at Google Scholar · View at Scopus
  23. A. Cubillo, R. Halari, C. Ecker, V. Giampietro, E. Taylor, and K. Rubia, “Reduced activation and inter-regional functional connectivity of fronto-striatal networks in adults with childhood Attention-Deficit Hyperactivity Disorder (ADHD) and persisting symptoms during tasks of motor inhibition and cognitive switching,” Journal of Psychiatric Research, vol. 44, no. 10, pp. 629–639, 2010. View at Publisher · View at Google Scholar · View at Scopus
  24. K. Rubia, A. Cubillo, A. B. Smith, J. Woolley, I. Heyman, and M. J. Brammer, “Disorder-specific dysfunction in right inferior prefrontal cortex during two inhibition tasks in boys with attention-deficit hyperactivity disorder compared to boys with obsessive-compulsive disorder,” Human Brain Mapping, vol. 31, no. 2, pp. 287–299, 2010. View at Publisher · View at Google Scholar · View at Scopus
  25. P. Shaw, “Attention-deficit/hyperactivity disorder and the battle for control of attention,” Journal of the American Academy of Child and Adolescent Psychiatry, vol. 51, no. 11, pp. 1116–1118, 2012. View at Publisher · View at Google Scholar · View at Scopus
  26. G. Bush, “Attention-deficit/hyperactivity disorder and attention networks,” Neuropsychopharmacology, vol. 35, no. 1, pp. 278–300, 2010. View at Publisher · View at Google Scholar · View at Scopus
  27. G. Bush, “Cingulate, frontal, and parietal cortical dysfunction in attention-deficit/hyperactivity disorder,” Biological Psychiatry, vol. 69, no. 12, pp. 1160–1167, 2011. View at Publisher · View at Google Scholar · View at Scopus
  28. X. Li, A. Sroubek, M. S. Kelly et al., “Atypical pulvinar-cortical pathways during sustained attention performance in children with attention-deficit/hyperactivity disorder,” Journal of the American Academy of Child and Adolescent Psychiatry, vol. 51, no. 11, pp. 1197–1207, 2012. View at Publisher · View at Google Scholar · View at Scopus
  29. F. X. Castellanos and E. Proal, “Large-scale brain systems in ADHD: beyond the prefrontal-striatal model,” Trends in Cognitive Sciences, vol. 16, no. 1, pp. 17–26, 2012. View at Publisher · View at Google Scholar · View at Scopus