Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2014, Article ID 386351, 6 pages
http://dx.doi.org/10.1155/2014/386351
Research Article

Decreased Thioredoxin-1 and Increased HSP90 Expression in Skeletal Muscle in Subjects with Type 2 Diabetes or Impaired Glucose Tolerance

1Institute of Biomedicine, Exercise Medicine, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland
2Institute of Biomedicine, Physiology, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland
3Department of Health, Functional Capacity and Welfare, Functional Capacity Unit, National Institute for Health and Welfare, 20720 Turku, Finland
4PET Centre, University of Turku, 20520 Turku, Finland
5Department of Chronic Disease Prevention, Population Studies Unit, National Institute for Health and Welfare, 20520 Turku, Finland
6Social Insurance Institution, Research Department, 20720 Turku, Finland

Received 26 April 2013; Revised 29 August 2013; Accepted 21 November 2013; Published 4 February 2014

Academic Editor: Mark M. Kushnir

Copyright © 2014 M. Venojärvi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Atalay and D. E. Laaksonen, “Diabetes, oxidative stress and physical exercise,” Journal of Sports Science and Medicine, vol. 1, no. 1, pp. 11–14, 2002. View at Google Scholar · View at Scopus
  2. D. P. Jones, “Radical-free biology of oxidative stress,” American Journal of Physiology: Cell Physiology, vol. 295, no. 4, pp. C849–C868, 2008. View at Publisher · View at Google Scholar · View at Scopus
  3. Z. Radak, Z. Zhao, E. Koltai, H. Ohno, and M. Atalay, “Oxygen consumption and usage during physical exercise: the balance between oxidative stress and ROS-dependent adaptive signaling,” Antioxidants & Redox Signaling, vol. 18, no. 10, pp. 1208–1246, 2013. View at Google Scholar
  4. M. Atalay, N. K. J. Oksala, D. E. Laaksonen et al., “Exercise training modulates heat shock protein response in diabetic rats,” Journal of Applied Physiology, vol. 97, no. 2, pp. 605–611, 2004. View at Publisher · View at Google Scholar · View at Scopus
  5. M. J. Urban, C. Li, C. Yu et al., “Inhibiting heat-shock protein 90 reverses sensory hypoalgesia in diabetic mice,” American Society for Neurochemistry, vol. 2, no. 4, Article ID e00040, 2010. View at Google Scholar · View at Scopus
  6. B. Hofmann, H.-J. Hecht, and L. Flohé, “Peroxiredoxins,” Biological Chemistry, vol. 383, no. 3-4, pp. 347–364, 2002. View at Publisher · View at Google Scholar · View at Scopus
  7. C. H. Lillig and A. Holmgren, “Thioredoxin and related molecules—from biology to health and disease,” Antioxidants and Redox Signaling, vol. 9, no. 1, pp. 25–47, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. J. Lu and A. Holmgren, “Thioredoxin system in cell death progression,” Antioxidants & Redox Signaling, vol. 17, no. 12, pp. 1738–1747, 2012. View at Google Scholar
  9. T. Hayashi, Y. Ueno, and T. Okamoto, “Oxidoreductive regulation of nuclear factor κ B. Involvement of a cellular reducing catalyst thioredoxin,” The Journal of Biological Chemistry, vol. 268, no. 15, pp. 11380–11388, 1993. View at Google Scholar · View at Scopus
  10. M. Atalay, A. Bilginoglu, T. Kokkola, N. Oksala, and B. Turan, “Treatments with sodium selenate or doxycycline offset diabetes-induced perturbations of thioredoxin-1 levels and antioxidant capacity,” Molecular and Cellular Biochemistry, vol. 351, no. 1-2, pp. 125–131, 2011. View at Publisher · View at Google Scholar · View at Scopus
  11. Y. Kakisaka, T. Nakashima, Y. Sumida et al., “Elevation of serum thioredoxin levels in patients with type 2 diabetes,” Hormone and Metabolic Research, vol. 34, no. 3, pp. 160–164, 2002. View at Google Scholar · View at Scopus
  12. Y. Miyazaki, H. Kawano, T. Yoshida et al., “Pancreatic B-cell function is altered by oxidative stress induced by acute hyperglycaemia,” Diabetic Medicine, vol. 24, no. 2, pp. 154–160, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. S. Miyamoto, H. Kawano, J. Hokamaki et al., “Increased plasma levels of thioredoxin in patients with glucose intolerance,” Internal Medicine, vol. 44, no. 11, pp. 1127–1132, 2005. View at Publisher · View at Google Scholar · View at Scopus
  14. I. Kurucz, Á. Morva, A. Vaag et al., “Decreased expression of heat shock protein 72 in skeletal muscle of patients with type 2 diabetes correlates with insulin resistance,” Diabetes, vol. 51, no. 4, pp. 1102–1109, 2002. View at Google Scholar · View at Scopus
  15. C. R. Bruce, A. L. Carey, J. A. Hawley, and M. A. Febbraio, “Intramuscular heat shock protein 72 and heme oxygenase-1 mRNA are reduced in patients with type 2 diabetes: evidence that insulin resistance is associated with a disturbed antioxidant defense mechanism,” Diabetes, vol. 52, no. 9, pp. 2338–2345, 2003. View at Publisher · View at Google Scholar · View at Scopus
  16. V. Calabrese, C. Cornelius, V. Leso et al., “Oxidative stress, glutathione status, sirtuin and cellular stress response in type 2 diabetes,” Biochimica et Biophysica Acta, vol. 1822, no. 5, pp. 729–736, 2012. View at Publisher · View at Google Scholar · View at Scopus
  17. J. Chung, A.-K. Nguyen, D. C. Henstridge et al., “HSP72 protects against obesity-induced insulin resistance,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 5, pp. 1739–1744, 2008. View at Publisher · View at Google Scholar · View at Scopus
  18. K. Hällsten, K. A. Virtanen, F. Lönnqvist et al., “Rosiglitazone but not metformin enhances insulin- and exercise-stimulated skeletal muscle glucose uptake in patients with newly diagnosed type 2 diabetes,” Diabetes, vol. 51, no. 12, pp. 3479–3485, 2002. View at Google Scholar · View at Scopus
  19. J. Eriksson, J. Lindström, T. Valle et al., “Prevention of Type II diabetes in subjects with impaired glucose tolerance: the Diabetes Prevention Study (DPS) in Finland. Study design and 1-year interim report on the feasibility of the lifestyle intervention programme,” Diabetologia, vol. 42, no. 7, pp. 793–801, 1999. View at Publisher · View at Google Scholar · View at Scopus
  20. J. Tuomilehto, J. Lindström, J. G. Eriksson et al., “Prevention of type 2 diabetes mellitus by changes in lifestyle among subjects with impaired glucose tolerance,” The New England Journal of Medicine, vol. 344, no. 18, pp. 1343–1350, 2001. View at Publisher · View at Google Scholar · View at Scopus
  21. M. Venojärvi, S. Aunola, R. Puhke et al., “Exercise training with dietary counselling increases mitochondrial chaperone expression in middle-aged subjects with impaired glucose tolerance,” BMC Endocrine Disorders, vol. 8, article 3, 2008. View at Publisher · View at Google Scholar · View at Scopus
  22. K. G. Alberti and P. Z. Zimmet, “Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: diagnosis and classification of diabetes mellitus provisional report of a WHO consultation,” Diabetic Medicine, vol. 15, no. 7, pp. 539–553, 1998. View at Google Scholar
  23. D. R. Matthews, J. P. Hosker, and A. S. Rudenski, “Homeostasis model assessment: insulin resistance and β-cell function from fasting plasma glucose and insulin concentrations in man,” Diabetologia, vol. 28, no. 7, pp. 412–419, 1985. View at Google Scholar · View at Scopus
  24. K. G. Henriksson, “'Semi-open' muscle biopsy technique. A simple outpatient procedure,” Acta Neurologica Scandinavica, vol. 59, no. 6, pp. 317–323, 1979. View at Google Scholar · View at Scopus
  25. M. Venojärvi, R. Puhke, H. Hämäläinen et al., “Role of skeletal muscle-fibre type in regulation of glucose metabolism in middle-aged subjects with impaired glucose tolerance during a long-term exercise and dietary intevention,” Diabetes, Obesity and Metabolism, vol. 7, no. 6, pp. 745–754, 2005. View at Publisher · View at Google Scholar · View at Scopus
  26. M. S. Hickey, M. D. Weidner, K. E. Gavigan, D. Zheng, G. L. Tyndall, and J. A. Houmard, “The insulin action-fiber type relationship in humans is muscle group specific,” American Journal of Physiology: Endocrinology and Metabolism, vol. 269, no. 1, pp. E150–E154, 1995. View at Google Scholar · View at Scopus
  27. C. J. Tanner, H. A. Barakat, G. Lynis Dohm et al., “Muscle fiber type is associated with obesity and weight loss,” American Journal of Physiology: Endocrinology and Metabolism, vol. 282, no. 6, pp. E1191–E1196, 2002. View at Google Scholar · View at Scopus
  28. D. E. James, A. B. Jenkins, and E. W. Kraegen, “Heterogeneity of insulin action in individual muscles in vivo: euglycemic clamp studies in rats,” The American Journal of Physiology, vol. 248, no. 5, pp. E567–E574, 1985. View at Google Scholar · View at Scopus
  29. J. He, S. Watkins, and D. E. Kelley, “Skeletal muscle lipid content and oxidative enzyme activity in relation to muscle fiber type in type 2 diabetes and obesity,” Diabetes, vol. 50, no. 4, pp. 817–823, 2001. View at Google Scholar · View at Scopus
  30. M. Nakhjavani, A. Morteza, L. Khajeali et al., “Increased serum HSP70 levels are associated with the duration of diabetes,” Cell Stress and Chaperones, vol. 15, no. 6, pp. 959–964, 2010. View at Publisher · View at Google Scholar · View at Scopus
  31. A. R. Tupling, E. Bombardier, R. D. Stewart, C. Vigna, and A. E. Aqui, “Muscle fiber type-specific response of Hsp70 expression in human quadriceps following acute isometric exercise,” Journal of Applied Physiology, vol. 103, no. 6, pp. 2105–2111, 2007. View at Publisher · View at Google Scholar · View at Scopus
  32. M. Locke, E. G. Noble, and B. G. Atkinson, “Inducible isoform of HSP70 is constitutively expressed in a muscle fiber type specific pattern,” American Journal of Physiology: Cell Physiology, vol. 261, no. 5, pp. C774–C779, 1991. View at Google Scholar · View at Scopus
  33. A. A. Gupte, G. L. Bomhoff, and P. C. Geiger, “Age-related differences in skeletal muscle insulin signaling: the role of stress kinases and heat shock proteins,” Journal of Applied Physiology, vol. 105, no. 3, pp. 839–848, 2008. View at Publisher · View at Google Scholar · View at Scopus
  34. J. P. Morton, A. C. Kayani, A. McArdle, and B. Drust, “The Exercise-Induced stress response of skeletal muscle, with specific emphasis on humans,” Sports Medicine, vol. 39, no. 8, pp. 643–662, 2009. View at Publisher · View at Google Scholar · View at Scopus
  35. A. D. Basso, D. B. Solit, G. Chiosis, B. Giri, P. Tsichlis, and N. Rosen, “Akt forms an intracellular complex with heat shock protein 90 (Hsp90) and Cdc37 and is destabilized by inhibitors of Hsp90 function,” Journal of Biological Chemistry, vol. 277, no. 42, pp. 39858–39866, 2002. View at Publisher · View at Google Scholar · View at Scopus
  36. P. Csermely, T. Schnaider, C. Soti, Z. Prohászka, and G. Nardai, “The 90-kDa molecular chaperone family: structure, function, and clinical applications. A comprehensive review,” Pharmacology and Therapeutics, vol. 79, no. 2, pp. 129–168, 1998. View at Publisher · View at Google Scholar · View at Scopus
  37. Y. Liao and M.-C. Hung, “Physiological regulation of Akt activity and stability,” American Journal of Translational Research, vol. 2, no. 1, pp. 19–42, 2010. View at Google Scholar · View at Scopus
  38. K. Højlund, K. Wrzesinski, P. M. Larsen et al., “Proteome analysis reveals phosphorylation of ATP synthase β-subunit in human skeletal muscle and proteins with potential roles in type 2 diabetes,” Journal of Biological Chemistry, vol. 278, no. 12, pp. 10436–10442, 2003. View at Publisher · View at Google Scholar · View at Scopus
  39. M. Atalay, N. Oksala, J. Lappalainen, D. E. Laaksonen, C. K. Sen, and S. Roy, “Heat shock proteins in diabetes and wound healing,” Current Protein and Peptide Science, vol. 10, no. 1, pp. 85–95, 2009. View at Publisher · View at Google Scholar · View at Scopus