Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2014, Article ID 386470, 11 pages
http://dx.doi.org/10.1155/2014/386470
Review Article

Newcastle Disease Virus Interaction in Targeted Therapy against Proliferation and Invasion Pathways of Glioblastoma Multiforme

1Center for Neuroscience Services and Research, Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kelantan, Malaysia
2Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kelantan, Malaysia
3Department of Neurosciences, Hospital Universiti Sains Malaysia, Jalan Sultanah Zainab 2, Kubang Kerian, 16150 Kota Bharu, Kelantan, Malaysia
4Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia

Received 10 February 2014; Revised 5 June 2014; Accepted 25 June 2014; Published 27 August 2014

Academic Editor: Betty Tyler

Copyright © 2014 Jafri Malin Abdullah et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. Biederer, S. Ries, C. H. Brandts, and F. McCormick, “Replication-selective viruses for cancer therapy,” Journal of Molecular Medicine, vol. 80, no. 3, pp. 163–175, 2002. View at Publisher · View at Google Scholar · View at Scopus
  2. F. J. Zemp, J. C. Corredor, X. Lun, D. A. Muruve, and P. A. Forsyth, “Oncolytic viruses as experimental treatments for malignant gliomas: using a scourge to treat a devil,” Cytokine and Growth Factor Reviews, vol. 21, no. 2-3, pp. 103–117, 2010. View at Publisher · View at Google Scholar · View at Scopus
  3. S. J. Russell, “RNA viruses as virotherapy agents,” Cancer Gene Therapy, vol. 9, no. 12, pp. 961–966, 2002. View at Publisher · View at Google Scholar · View at Scopus
  4. S. Elankumaran, D. Rockemann, and S. K. Samal, “Newcastle disease virus exerts oncolysis by both intrinsic and extrinsic caspase-dependent pathways of cell death,” Journal of Virology, vol. 80, no. 15, pp. 7522–7534, 2006. View at Publisher · View at Google Scholar · View at Scopus
  5. R. Martinez and M. Esteller, “The DNA methylome of glioblastoma multiforme,” Neurobiology of Disease, vol. 39, no. 1, pp. 40–46, 2010. View at Publisher · View at Google Scholar · View at Scopus
  6. O. O. Kanu, B. Hughes, C. Di et al., “Glioblastoma multiforme oncogenomics and signaling pathways,” Clinical Medicine: Oncology, vol. 3, pp. 39–52, 2009. View at Google Scholar · View at Scopus
  7. Z. Mustafa, H. S. Shamsuddin, A. Ideris et al., “Viability reduction and rac1 gene downregulation of heterogeneous Ex-Vivo glioma acute slice infected by the oncolytic newcastle disease virus strain V4UPM,” BioMed Research International, vol. 2013, Article ID 248507, 8 pages, 2013. View at Publisher · View at Google Scholar · View at Scopus
  8. E. A. Maher, F. B. Furnari, R. M. Bachoo et al., “Malignant glioma: genetics and biology of a grave matter,” Genes and Development, vol. 15, no. 11, pp. 1311–1333, 2001. View at Publisher · View at Google Scholar · View at Scopus
  9. G. M. O'Neill, J. Zhong, A. Paul, and S. J. Kellie, “Mesenchymal migration as a therapeutic target in glioblastoma,” Journal of Oncology, vol. 2010, Article ID 430142, 17 pages, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. M. Mansour, P. Palese, and D. Zamarin, “Oncolytic specificity of newcastle disease virus is mediated by selectivity for apoptosis-resistant cells,” Journal of Virology, vol. 85, no. 12, pp. 6015–6023, 2011. View at Publisher · View at Google Scholar · View at Scopus
  11. D. Zamarin and P. Palese, “Oncolytic Newcastle disease virus for cancer therapy: old challenges and new directions,” Future Microbiology, vol. 7, no. 3, pp. 347–367, 2012. View at Publisher · View at Google Scholar · View at Scopus
  12. M. M. Zulkifli, R. Ibrahim, A. M. Ali et al., “Newcastle diseases virus strain V4UPM displayed oncolytic ability against experimental human malignant glioma,” Neurological Research, vol. 31, no. 1, pp. 3–10, 2009. View at Publisher · View at Google Scholar · View at Scopus
  13. P. A. McKinney, “Brain tumours: incidence, survival, and aetiology,” Journal of Neurology, Neurosurgery & Psychiatry, vol. 75, no. 2, pp. ii12–ii17, 2004. View at Google Scholar · View at Scopus
  14. M. Nakada, D. Kita, T. Watanabe et al., “Aberrant signaling pathways in Glioma,” Cancers, vol. 3, no. 3, pp. 3242–3278, 2011. View at Publisher · View at Google Scholar · View at Scopus
  15. E. C. Holland, “Glioblastoma multiforme: the terminator,” Proceedings of the National Academy of Sciences of the United States of America, vol. 97, no. 12, pp. 6242–6244, 2000. View at Publisher · View at Google Scholar · View at Scopus
  16. A. Zanotto-Filho, E. Braganhol, R. Schröder et al., “NFκB inhibitors induce cell death in glioblastomas,” Biochemical Pharmacology, vol. 81, no. 3, pp. 412–424, 2011. View at Publisher · View at Google Scholar · View at Scopus
  17. M. Nakada, S. Nakada, T. Demuth, N. L. Tran, D. B. Hoelzinger, and M. E. Berens, “Molecular targets of glioma invasion,” Cellular and Molecular Life Sciences, vol. 64, no. 4, pp. 458–478, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. A. Haseley, C. Alvarez-Breckenridge, A. R. Chaudhury, and B. Kaur, “Advances in oncolytic virus therapy for glioma,” Recent Patents on CNS Drug Discovery, vol. 4, no. 1, pp. 1–13, 2009. View at Publisher · View at Google Scholar · View at Scopus
  19. V. Nagesh, T. L. Chenevert, C. I. Tsien et al., “Quantitative characterization of hemodynamic properties and vasculature dysfunction of high-grade gliomas,” NMR in Biomedicine, vol. 20, no. 6, pp. 566–577, 2007. View at Publisher · View at Google Scholar · View at Scopus
  20. X. Lun, D. L. Senger, T. Alain et al., “Effects of intravenously administered recombinant vesicular stomatitis virus (VSVΔM51) on multifocal and invasive gliomas,” Journal of the National Cancer Institute, vol. 98, no. 21, pp. 1546–1557, 2006. View at Publisher · View at Google Scholar · View at Scopus
  21. A. Jemal, R. Siegel, E. Ward, Y. Hao, J. Xu, and M. J. Thun, “Cancer statistics, 2009,” CA: A Cancer Journal for Clinicians, vol. 59, no. 4, pp. 225–249, 2009. View at Publisher · View at Google Scholar · View at Scopus
  22. Z. A. Omar, M. Z. Ali, and N. S. I. Tamin, Malaysian Cancer Statistics—Data and Figure Peninsular Malaysia 2006, National Cancer Registry, Ministry of Health, Putrajaya, Malaysia, 2006.
  23. M. Farooqui, M. A. Hassali, A. Knight et al., “A qualitative exploration of Malaysian cancer patients' perceptions of cancer screening,” BMC Public Health, vol. 13, article 48, 2013. View at Publisher · View at Google Scholar · View at Scopus
  24. D. N. Louis, E. C. Holland, and J. G. Cairncross, “Glioma classification: a molecular reappraisal,” The American Journal of Pathology, vol. 159, no. 3, pp. 779–786, 2001. View at Publisher · View at Google Scholar · View at Scopus
  25. N. A. Butowski and S. M. Chang, “Glial tumors: the current state of scientific knowledge,” Clinical Neurosurgery, vol. 53, pp. 106–113, 2006. View at Google Scholar · View at Scopus
  26. M. C. Chamberlain, “Bevacizumab for the treatment of recurrent glioblastoma,” Clinical Medicine Insights: Oncology, vol. 5, pp. 117–129, 2011. View at Publisher · View at Google Scholar · View at Scopus
  27. G. Karpel-Massler and M. E. Halatsch, “The molecular basis of resistance to the antiproliferative effect of EGFR inhibition in human glioblastoma multiforme cell lines,” in Brain Tumors—Current and Emerging Therapeutic Strategies, A. L. Abujamra, Ed., pp. 245–252, InTech, Vienna, Austria, 2011. View at Google Scholar
  28. M. Bredel, D. M. Scholtens, A. K. Yadav et al., “NFKBIA deletion in glioblastomas,” The New England Journal of Medicine, vol. 364, no. 7, pp. 627–637, 2011. View at Publisher · View at Google Scholar · View at Scopus
  29. P. Villalonga, R. M. Guasch, K. Riento, and A. J. Ridley, “RhoE inhibits cell cycle progression and Ras-induced transformation,” Molecular and Cellular Biology, vol. 24, no. 18, pp. 7829–7840, 2004. View at Publisher · View at Google Scholar · View at Scopus
  30. B. Everts and H. G. Van Der Poel, “Replication-selective oncolytic viruses in the treatment of cancer,” Cancer Gene Therapy, vol. 12, no. 2, pp. 141–161, 2005. View at Publisher · View at Google Scholar · View at Scopus
  31. D. Joyce, B. Bouzahzah, M. Fu et al., “Integration of Rac-dependent regulation of cyclin D1 transcription through a nuclear factor-κB-dependent pathway,” The Journal of Biological Chemistry, vol. 274, no. 36, pp. 25245–25249, 1999. View at Publisher · View at Google Scholar · View at Scopus
  32. L. Boyer, S. Travaglione, L. Falzano et al., “Rac GTPase instructs nuclear factor- kappaB activation by conveying the SCF complex and IkBalpha to the ruffling membranes,” Molecular Biology of the Cell, vol. 15, no. 3, pp. 1124–1133, 2004. View at Publisher · View at Google Scholar · View at Scopus
  33. D. Sun, D. Xu, and B. Zhang, “Rac signaling in tumorigenesis and as target for anticancer drug development,” Drug Resistance Updates, vol. 9, no. 6, pp. 274–287, 2006. View at Publisher · View at Google Scholar · View at Scopus
  34. M. A. Garcia, P. Gallego, M. Campagna et al., “Activation of NF-κB pathway by virus infection requires Rb expression,” PLoS ONE, vol. 4, no. 7, Article ID e6422, 2009. View at Publisher · View at Google Scholar · View at Scopus
  35. L. A. Selznick, M. F. Shamji, P. Fecci, M. Gromeier, A. H. Friedman, and J. Sampson, “Molecular strategies for the treatment of malignant glioma—genes, viruses, and vaccines,” Neurosurgical Review, vol. 31, no. 2, pp. 141–155, 2008. View at Publisher · View at Google Scholar · View at Scopus
  36. J. Puhlmann, F. Puehler, D. Mumberg, P. Boukamp, and R. Beier, “Rac1 is required for oncolytic NDV replication in human cancer cells and establishes a link between tumorigenesis and sensitivity to oncolytic virus,” Oncogene, vol. 29, no. 15, pp. 2205–2216, 2010. View at Publisher · View at Google Scholar · View at Scopus
  37. B. S. Seal, D. J. King, and H. S. Sellers, “The avian response to Newcastle disease virus,” Developmental and Comparative Immunology, vol. 24, no. 2-3, pp. 257–268, 2000. View at Publisher · View at Google Scholar · View at Scopus
  38. D. Nidzworski, L. Rabalski, and B. Gromadzka, “Detection and differentiation of virulent and avirulent strains of Newcastle disease virus by real-time PCR,” Journal of Virological Methods, vol. 173, no. 1, pp. 144–149, 2011. View at Publisher · View at Google Scholar · View at Scopus
  39. J. C. Dortmans, G. Koch, P. J. Rottier, and B. P. Peeters, “Virulence of newcastle disease virus: what is known so far?” Veterinary Research, vol. 42, no. 1, article 122, 2011. View at Publisher · View at Google Scholar · View at Scopus
  40. V. Schirrmacher and P. Fournier, “Newcastle disease virus: a promising vector for viral therapy, immune therapy, and gene therapy of cancer,” Methods in Molecular Biology, vol. 542, pp. 565–605, 2009. View at Publisher · View at Google Scholar · View at Scopus
  41. J. G. Sinkovics and J. C. Horvath, “Newcastle disease virus (NDV): brief history of its oncolytic strains,” Journal of Clinical Virology, vol. 16, no. 1, pp. 1–15, 2000. View at Google Scholar · View at Scopus
  42. A. I. Freeman, Z. Zakay-Rones, J. M. Gomori et al., “Phase I/II trial of intravenous NDV-HUJ oncolytic virus in recurrent glioblastoma multiforme,” Molecular Therapy, vol. 13, no. 1, pp. 221–228, 2006. View at Publisher · View at Google Scholar · View at Scopus
  43. A. M. Alabsi, S. A. A. Bakar, R. Ali et al., “Effects of Newcastle disease virus strains AF2240 and V4-UPM on cytolysis and apoptosis of leukemia cell lines,” International Journal of Molecular Sciences, vol. 12, no. 12, pp. 8645–8660, 2011. View at Publisher · View at Google Scholar · View at Scopus
  44. K. A. Parato, D. Senger, P. A. J. Forsyth, and J. C. Bell, “Recent progress in the battle between oncolytic viruses and tumours,” Nature Reviews Cancer, vol. 5, no. 12, pp. 965–976, 2005. View at Publisher · View at Google Scholar · View at Scopus
  45. R. J. Prestwich, F. Errington, K. J. Harrington, H. S. Pandha, P. Selby, and A. Melcher, “Oncolytic viruses: do they have a role in anti-cancer therapy?” Clinical Medicine. Oncology, vol. 2, pp. 83–96, 2008. View at Google Scholar
  46. S. Krishnamurthy, T. Takimoto, R. A. Scroggs, and A. Portner, “Differentially regulated interferon response determines the outcome of newcastle disease virus infection in normal and tumor cell lines,” Journal of Virology, vol. 80, no. 11, pp. 5145–5155, 2006. View at Publisher · View at Google Scholar · View at Scopus
  47. J. Miyakoshi, K. D. Dobler, J. Allalunis-Turner et al., “Absence of IFNA and IFNB genes from human malignant glioma cell lines and lack of correlation with cellular sensitivity to interferons,” Cancer Research, vol. 50, no. 2, pp. 278–283, 1990. View at Google Scholar · View at Scopus
  48. B. Yaacov, E. Elihaoo, I. Lazar et al., “Selective oncolytic effect of an attenuated Newcastle disease virus (NDV-HUJ) in lung tumors,” Cancer Gene Therapy, vol. 15, no. 12, pp. 795–807, 2008. View at Publisher · View at Google Scholar · View at Scopus
  49. I. Lazar, B. Yaacov, T. Shiloach et al., “The oncolytic activity of Newcastle disease virus NDV-HUJ on chemoresistant primary melanoma cells is dependent on the proapoptotic activity of the inhibitor of apoptosis protein livin,” Journal of Virology, vol. 84, no. 1, pp. 639–646, 2010. View at Publisher · View at Google Scholar · View at Scopus
  50. R. M. Lorence, B. B. Katubig, K. W. Reichard et al., “Complete regression of human fibrosarcoma xenografts after local Newcastle disease virus therapy,” Cancer Research, vol. 54, no. 23, pp. 6017–6021, 1994. View at Google Scholar · View at Scopus
  51. J. G. Sinkovics and J. C. Horvath, “Natural and genetically engineered viral agents for oncolysis and gene therapy of human cancers,” Archivum Immunologiae et Therapiae Experimentalis, vol. 56, supplement 1, pp. 3s–59s, 2008. View at Publisher · View at Google Scholar · View at Scopus
  52. M. Aghi and E. A. Chiocca, “Gene therapy for glioblastoma,” Neurosurgical Focus, vol. 20, no. 4, article E18, 2006. View at Google Scholar · View at Scopus
  53. D. Kirn, R. L. Martuza, and J. Zwiebel, “Replication-selective virotherapy for cancer: biological principles, risk management and future directions,” Nature Medicine, vol. 7, no. 7, pp. 781–787, 2001. View at Publisher · View at Google Scholar · View at Scopus
  54. D. L. Senger, C. Tudan, M. Guiot et al., “Suppression of Rac activity induces apoptosis of human glioma cells but not normal human astrocytes,” Cancer Research, vol. 62, no. 7, pp. 2131–2140, 2002. View at Google Scholar · View at Scopus
  55. O. Gjoerup, J. Lukas, J. Bartek, and B. M. Willumsen, “Rac and Cdc42 are potent stimulators of E2F-dependent transcription capable of promoting retinoblastoma susceptibility gene product hyperphosphorylation,” The Journal of Biological Chemistry, vol. 273, no. 30, pp. 18812–18818, 1998. View at Publisher · View at Google Scholar · View at Scopus
  56. D. Michaelson, W. Abidi, D. Guardavaccaro et al., “Rac1 accumulates in the nucleus during the G2 phase of the cell cycle and promotes cell division,” Journal of Cell Biology, vol. 181, no. 3, pp. 485–496, 2008. View at Publisher · View at Google Scholar · View at Scopus
  57. M. Auer, B. Hausott, and L. Klimaschewski, “Rho GTPases as regulators of morphological neuroplasticity,” Annals of Anatomy, vol. 193, no. 4, pp. 259–266, 2011. View at Publisher · View at Google Scholar · View at Scopus
  58. C. Krakstad and M. Chekenya, “Survival signalling and apoptosis resistance in glioblastomas: opportunities for targeted therapeutics,” Molecular Cancer, vol. 9, article 135, 2010. View at Publisher · View at Google Scholar · View at Scopus
  59. T. Yoshida, Y. Zhang, L. A. R. Rosado et al., “Blockade of Rac1 activity induces G1 cell cycle arrest or apoptosis in breast cancer cells through downregulation of cyclin D1, survivin, and X-linked inhibitor of apoptosis protein,” Molecular Cancer Therapeutics, vol. 9, no. 6, pp. 1657–1668, 2010. View at Publisher · View at Google Scholar · View at Scopus
  60. A. Y. Chan, S. J. Coniglio, Y. Chuang et al., “Roles of the Rac1 and Rac3 GTPases in human tumor cell invasion,” Oncogene, vol. 24, no. 53, pp. 7821–7829, 2005. View at Publisher · View at Google Scholar · View at Scopus
  61. M. P. Taylor, O. O. Koyuncu, and L. W. Enquist, “Subversion of the actin cytoskeleton during viral infection,” Nature Reviews Microbiology, vol. 9, no. 6, pp. 427–439, 2011. View at Publisher · View at Google Scholar · View at Scopus
  62. X. Li, J. W. Law, and A. Y. Lee, “Semaphorin 5A and plexin-B3 regulate human glioma cell motility and morphology through Rac1 and the actin cytoskeleton,” Oncogene, vol. 31, no. 5, pp. 595–610, 2012. View at Publisher · View at Google Scholar · View at Scopus
  63. J. Szczepanowska, “Involvement of Rac/Cdc42/PAK pathway in cytoskeletal rearrangements,” Acta Biochimica Polonica, vol. 56, no. 2, pp. 225–234, 2009. View at Google Scholar · View at Scopus
  64. C. Cantín, J. Holguera, L. Ferrerira, E. Villar, and I. Muñoz-Barroso, “Newcastle disease virus may enter cells by caveolae-mediated endocytosis,” Journal of General Virology, vol. 88, part 2, pp. 559–569, 2007. View at Publisher · View at Google Scholar · View at Scopus
  65. N. Branza-Nichita, A. Macovei, and C. Lazar, “Caveolae-dependent endocytosis in viral infection,” in Molecular Regulation of Endocytosis, B. Ceresa, Ed., p. 31, InTech, 2012. View at Google Scholar
  66. J. Mercer, M. Schelhaas, and A. Helenius, “Virus entry by endocytosis,” Annual Review of Biochemistry, vol. 79, pp. 803–833, 2010. View at Publisher · View at Google Scholar · View at Scopus
  67. J. J. Martín, J. Holguera, L. Sánchez-Felipe, E. Villar, and I. Muñoz-Barroso, “Cholesterol dependence of Newcastle Disease Virus entry,” Biochimica et Biophysica Acta—Biomembranes, vol. 1818, no. 3, pp. 753–761, 2012. View at Publisher · View at Google Scholar · View at Scopus
  68. R. M. Schowalter, M. A. Wurth, H. C. Aguilar et al., “Rho GTPase activity modulates paramyxovirus fusion protein-mediated cell-cell fusion,” Virology, vol. 350, no. 2, pp. 323–334, 2006. View at Publisher · View at Google Scholar · View at Scopus
  69. M. Nethe, E. C. Anthony, M. Fernandez-Borja et al., “Focal-adhesion targeting links caveolin-1 to a Rac1-degradation pathway,” Journal of Cell Science, vol. 123, no. 11, pp. 1948–1958, 2010. View at Publisher · View at Google Scholar · View at Scopus
  70. M. H. Park, B. Ahn, Y. Hong, and D. S. Min, “Overexpression of phospholipase D enhances matrix metalloproteinase-2 expression and glioma cell invasion via protein kinase C and protein kinase A/NF-κB/Sp1-mediated signaling pathways,” Carcinogenesis, vol. 30, no. 2, pp. 356–365, 2009. View at Publisher · View at Google Scholar · View at Scopus
  71. V. M. Paulino, Z. Yang, J. Kloss et al., “TROY (TNFRSF19) is overexpressed in advanced glial tumors and promotes glioblastoma cell invasion via Pyk2-Rac1 signaling,” Molecular Cancer Research, vol. 8, no. 11, pp. 1558–1567, 2010. View at Publisher · View at Google Scholar · View at Scopus
  72. J. P. Laliberte, L. W. McGinnes, M. E. Peeples, and T. G. Morrison, “Integrity of membrane lipid rafts is necessary for the ordered assembly and release of infectious Newcastle disease virus particles,” Journal of Virology, vol. 80, no. 21, pp. 10652–10662, 2006. View at Publisher · View at Google Scholar · View at Scopus
  73. M. S. Harrison, T. Sakaguchi, and A. P. Schmitt, “Paramyxovirus assembly and budding: building particles that transmit infections,” International Journal of Biochemistry and Cell Biology, vol. 42, no. 9, pp. 1416–1429, 2010. View at Publisher · View at Google Scholar · View at Scopus
  74. E. E. Bosco, J. C. Mulloy, and Y. Zheng, “Rac1 GTPase: a “Rac” of all trades,” Cellular and Molecular Life Sciences, vol. 66, no. 3, pp. 370–374, 2009. View at Publisher · View at Google Scholar · View at Scopus
  75. Z. Fábián, C. M. Csatary, J. Szeberényi, and L. K. Csatary, “p53-independent endoplasmic reticulum stress-mediated cytotoxicity of a Newcastle disease virus strain in tumor cell lines,” Journal of Virology, vol. 81, no. 6, pp. 2817–2830, 2007. View at Publisher · View at Google Scholar · View at Scopus
  76. C. Albertinazzi, A. Cattelino, and I. de Curtis, “Rac GTPases localize at sites of actin reorganization during dynamic remodeling of the cytoskeleton of normal embryonic fibroblasts,” Journal of Cell Science, vol. 112, no. 21, pp. 3821–3831, 1999. View at Google Scholar · View at Scopus
  77. R. Ibrahim, Local V4UPM strain newcastle viruses induce cell death of brain tumor cell lines [M.S. thesis], Universiti Putra Malaysia, Serdang, Malaysia, 2011.
  78. P. A. Janmey, “The cytoskeleton and cell signaling: component localization and mechanical coupling,” Physiological Reviews, vol. 78, no. 3, pp. 763–781, 1998. View at Google Scholar · View at Scopus