Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2014, Article ID 408068, 7 pages
http://dx.doi.org/10.1155/2014/408068
Research Article

Inhibitory Effect of Plant Manilkara subsericea against Biological Activities of Lachesis muta Snake Venom

1Laboratório de Venenos e Toxinas de Animais e Avaliação de Inibidores, Departamento de Biologia Celular e Molecular, Instituto de Biologia, Universidade Federal Fluminense, Outeiro de São João Batista, 3º andar, Sala 310, 24020-141 Niterói, RJ, Brazil
2Programa de Pós-Graduação em Ciências Aplicadas a Produtos para a Saúde, Faculdade de Farmácia, Universidade Federal Fluminense, 24220-900 Niterói, RJ, Brazil
3Programa de Pós-Graduação em Biotecnologia Vegetal, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, 21941-599 Rio de Janeiro, RJ, Brazil
4Centro de Pesquisa e Desenvolvimento, Fundação Ezequiel Dias, 30510-010 Belo Horizonte, MG, Brazil

Received 28 August 2013; Revised 9 December 2013; Accepted 10 December 2013; Published 8 January 2014

Academic Editor: Leonardo A. Calderon

Copyright © 2014 Eduardo Coriolano De Oliveira et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. M. Gutiérrez, H. W. Fan, C. L. M. Silvera, and Y. Angulo, “Stability, distribution and use of antivenoms for snakebite envenomation in Latin America: report of a workshop,” Toxicon, vol. 53, no. 6, pp. 625–630, 2009. View at Publisher · View at Google Scholar · View at Scopus
  2. J. M. Gutiérrez, G. León, and T. Burnouf, “Antivenoms for the treatment of snakebite envenomings: the road ahead,” Biologicals, vol. 39, no. 3, pp. 129–142, 2011. View at Publisher · View at Google Scholar · View at Scopus
  3. J. J. Calvete, L. Sanz, Y. Ângulo, B. Lomonte, and J. M. Gutiérrez, “Venoms, venomics, antivenomics,” FEBS Letters, vol. 583, no. 5, pp. 1736–1743, 2009. View at Google Scholar
  4. K. J. Clemetson, “Snaclecs (snake C-type lectins) that inhibit or activate platelets by binding to receptors,” Toxicon, vol. 56, no. 7, pp. 1236–1246, 2010. View at Publisher · View at Google Scholar · View at Scopus
  5. J. A. Campbell and W. W. Lamar, The Venomous Reptiles of Latin America, Cornell University Press, Ithaca, NY, USA, 1989.
  6. J. M. Gutiérrez, “Comprendiendo los venenos de serpientes: 50 años de investigaciones en América Latina,” Revista de Biologia Tropical, vol. 50, no. 2, pp. 377–394, 2002. View at Google Scholar · View at Scopus
  7. A. M. Soares, M. R. M. Fontes, and J. R. Giglio, “Phospholipase A2 myotoxins from Bothrops snake venoms: structure-function relationship,” Current Organic Chemistry, vol. 8, no. 17, pp. 1677–1690, 2004. View at Publisher · View at Google Scholar · View at Scopus
  8. World Health Organization, Guidelines for the Production Control and Regulation of Snake Antivenom Immunoglobulins, WHO, Geneva, Switzerland, 2010.
  9. W. B. Mors, M. C. do Nascimento, B. M. R. Pereira, and N. A. Pereira, “Plant natural products active against snake bite—the molecular approach,” Phytochemistry, vol. 55, no. 6, pp. 627–642, 2000. View at Publisher · View at Google Scholar · View at Scopus
  10. M. S. Santhosh, M. Hemshekhar, K. Sunitha et al., “Snake venom induced local toxicities: plant secondary metabolites as an auxiliary therapy,” Mini-Reviews in Medicinal Chemistry, vol. 13, no. 1, pp. 106–123, 2013. View at Publisher · View at Google Scholar
  11. J. Vásquez, S. L. Jiménez, I. C. Gómez et al., “Snakebites and ethnobotany in the Eastern region of Antioquia, Colombia-the traditional use of plants,” Journal of Ethnopharmacology, vol. 146, no. 2, pp. 449–455, 2013. View at Google Scholar
  12. R. Gomes, M. C. B. Pinheiro, H. A. de Lima, and L. D. R. Santiago-Fernandes, “Biologia floral de Manilkara subsericea e de Sideroxylon obtusifolium (Sapotaceae) em restinga,” Revista Brasileira de Botânica, vol. 33, no. 2, pp. 271–283, 2010. View at Google Scholar · View at Scopus
  13. C. P. Fernandes, A. L. Corrêa, J. F. R. Lobo et al., “Triterpene esters and biological activities from edible fruits of Manilkara subsericea (Mart.) Dubard, Sapotaceae,” BioMed Research International, vol. 2013, Article ID 280810, 7 pages, 2013. View at Publisher · View at Google Scholar
  14. G. Misra and C. R. Mitra, “Mimusops manilkara, constituents of fruit and seed,” Phytochemistry, vol. 8, no. 1, pp. 249–252, 1969. View at Google Scholar · View at Scopus
  15. C. Lavaud, G. Massiot, M. Becchi, G. Misra, and S. K. Nigam, “Saponins from three species of Mimusops,” Phytochemistry, vol. 41, no. 3, pp. 887–893, 1996. View at Google Scholar · View at Scopus
  16. J. Ma, X.-D. Luo, P. Protiva et al., “Bioactive novel polyphenols from the fruit of Manilkara zapota (Sapodilla),” Journal of Natural Products, vol. 66, no. 7, pp. 983–986, 2003. View at Publisher · View at Google Scholar · View at Scopus
  17. A. Cáceres, H. Menéndez, E. Méndez et al., “Antigonorrhoeal activity of plants used in Guatemala for the treatment of sexually transmitted diseases,” Journal of Ethnopharmacology, vol. 48, no. 2, pp. 85–88, 1995. View at Publisher · View at Google Scholar · View at Scopus
  18. R. Nair and S. Chanda, “Antimicrobial activity of Terminalia catappa, Manilkara zapota and Piper betel leaf extract,” Indian Journal of Pharmaceutical Sciences, vol. 70, no. 3, pp. 390–393, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. S. Muelas-Serrano, J. J. Nogal, R. A. Martínez-Díaz, J. A. Escario, A. R. Martínez-Fernández, and A. Gómez-Barrio, “In vitro screening of American plant extracts on Trypanosoma cruzi and Trichomonas vaginalis,” Journal of Ethnopharmacology, vol. 71, no. 1-2, pp. 101–107, 2000. View at Publisher · View at Google Scholar · View at Scopus
  20. J. Desrivot, J. Waikedre, P. Cabalion et al., “Antiparasitic activity of some New Caledonian medicinal plants,” Journal of Ethnopharmacology, vol. 112, no. 1, pp. 7–12, 2007. View at Publisher · View at Google Scholar · View at Scopus
  21. C. P. Fernandes, A. L. Corrêa, R. A. S. Cruz et al., “Anticholinesterasic activity of Manilkara subsericea (Mart.) Dubard triterpenes,” Latin American Journal of Pharmacy, vol. 30, no. 8, pp. 1631–1634, 2011. View at Google Scholar · View at Scopus
  22. C. P. Fernandes, A. Xavier, J. P. Pacheco et al., “Laboratory evaluation of the effects of Manilkara subsericea (Mart.) Dubard extracts and triterpenes on the development of Dysdercus peruvianus and Oncopeltus fasciatus,” Pest Management Science, vol. 69, no. 2, pp. 292–301, 2013. View at Publisher · View at Google Scholar
  23. G. M. Cragg, D. J. Newman, and S. S. Yang, “‘Natural product extracts of plant and marine origin having antileukemia potential’ the NCI experience,” Journal of Natural Products, vol. 69, no. 3, pp. 488–498, 2006. View at Publisher · View at Google Scholar · View at Scopus
  24. E. S. Garcia, J. A. Guimarães, and J. L. Prado, “Purification and characterization of a sulfhydryl-dependent protease from Rhodnius prolixus midgut,” Archives of Biochemistry and Biophysics, vol. 188, no. 2, pp. 315–322, 1978. View at Google Scholar · View at Scopus
  25. A. L. Fuly, O. L. Machado, E. W. Alves, and C. C. Carlini, “Mechanism of inhibitory action on platelet activation of a phospholipase A2 isolated from Lachesis muta (Bushmaster) snake venom,” Thrombosis and Haemostasis, vol. 78, no. 5, pp. 1372–1380, 1997. View at Google Scholar · View at Scopus
  26. H. Kondo, S. Kondo, H. Ikegawa, and R. Murata, “Studies on the quantitative method for determination of hemorrhagic activity of habu snake venom,” Japanese Journal of Medical Science and Biology, vol. 13, no. 1-2, pp. 43–52, 1960. View at Google Scholar
  27. M. Yamakawa, M. Nozani, and Z. Hokama, “Fractionation of sakishima-habu (Trimeresurus elegans) venom and lethal hemorrhagic, and edema forming activities of the fractions,” in Toxins: Animal, Plant and Microbial, A. Ohsaka, K. Hayashi, and Y. Sawai, Eds., pp. 97–120, Plenum Press, New York, NY, USA, 1976. View at Google Scholar
  28. R. C. de Paula, E. F. Sanchez, T. R. Costa et al., “Antiophidian properties of plant extracts against Lachesis muta venom,” Journal of Venomous Animals and Toxins Including Tropical Diseases, vol. 16, no. 2, pp. 311–323, 2010. View at Google Scholar · View at Scopus
  29. J. Leanpolchareanchai, P. Pithayanukul, and R. Bavovada, “Anti-necrosis potential of polyphenols against snake venoms,” Immunopharmacology and Immunotoxicology, vol. 31, no. 4, pp. 556–562, 2009. View at Publisher · View at Google Scholar · View at Scopus
  30. B. O. Owuor and D. P. Kisangau, “Kenyan medicinal plants used as antivenin: a comparison of plant usage,” Journal of Ethnobiology and Ethnomedicine, vol. 2, article 7, pp. 1–8, 2006. View at Publisher · View at Google Scholar · View at Scopus
  31. T. F. S. Domingos, F. A. Ortiz-Ramirez, R. C. Villaça et al., “Inhibitory effect of a Brazilian marine brown alga Spatoglossum schröederi upon biological activities of Lachesis muta snake venom,” Brazilian Journal of Pharmacognosy, vol. 22, no. 4, pp. 741–747, 2012. View at Google Scholar
  32. B. Havsteen, “Flavonoids, a class of natural products of high pharmacological potency,” Biochemical Pharmacology, vol. 32, no. 23, pp. 1141–1148, 1983. View at Google Scholar
  33. Z. E. Selvanayagam, S. G. Gnanavendhan, K. Balakrishna et al., “Ehretian one, a novel quinonoid xanthene from Ehretia buxifolia with antisnake venom activity,” Journal of Natural Products, vol. 59, no. 7, pp. 664–667, 1996. View at Publisher · View at Google Scholar · View at Scopus
  34. M. I. Alam, B. Auddy, and A. Gomes, “Isolation, purification and partial characterization of viper venom inhibiting factor from the root extract of the Indian medicinal plant sarsaparilla (Hemidesmus indicus R.br.),” Toxicon, vol. 32, no. 12, pp. 1551–1557, 1994. View at Publisher · View at Google Scholar · View at Scopus
  35. M. I. Alam and A. Gomes, “Snake venom neutralization by Indian medicinal plants (Vitex negundo and Emblica officinalis) root extracts,” Journal of Ethnopharmacology, vol. 86, no. 1, pp. 75–80, 2003. View at Publisher · View at Google Scholar · View at Scopus
  36. A. Bhattacharya, A. Chatterjee, S. Ghosal, and S. K. Bhattacharya, “Antioxidant activity of active tannoid principles of Emblica officinalis (amla),” Indian Journal of Experimental Biology, vol. 37, no. 7, pp. 676–680, 1999. View at Google Scholar · View at Scopus
  37. J. M. Gutiérrez and B. Lomonte, “Phospholipases A2: unveiling the secrets of a functionally versatile group of snake venom toxins,” Toxicon, vol. 62, no. 5, pp. 27–39, 2013. View at Google Scholar
  38. V. C. Carregari, R. S. Floriano, L. Rodrigues-Simioni et al., “Biochemical, pharmacological, and structural characterization of new basic PLA2 Bbil-TX from Bothriopsis bilineata snake venom,” BioMed Research International, vol. 2013, Article ID 61264, 12 pages, 2013. View at Publisher · View at Google Scholar
  39. R. P. Samy, P. Gopalakrishnakone, and V. T. K. Chow, “Therapeutic application of natural inhibitors against snake venom phospholipase A2,” Bioinformation, vol. 8, pp. 48–57, 2012. View at Google Scholar
  40. L. A. Moura, E. F. Sanchez, E. M. Bianco, R. C. Pereira, V. L. Teixeira, and A. L. Fuly, “Antiophidian properties of a dolastane diterpene isolated from the marine brown alga Canistrocarpus cervicornis,” Biomedicine & Preventive Nutrition, vol. 1, no. 1, pp. 61–66, 2011. View at Publisher · View at Google Scholar · View at Scopus