Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2014 (2014), Article ID 413629, 11 pages
Research Article

Genotype-Related Effect of Crowding Stress on Blood Pressure and Vascular Function in Young Female Rats

Institute of Normal and Pathological Physiology, Centre of Excellence for Examination of Regulatory Role of Nitric Oxide in Civilization Diseases, Slovak Academy of Sciences, Sienkiewiczova 1, 813 71 Bratislava, Slovakia

Received 9 December 2013; Accepted 27 January 2014; Published 5 March 2014

Academic Editor: Vladimir V. Matchkov

Copyright © 2014 Peter Slezak et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


This study investigated the influence of chronic crowding stress on nitric oxide (NO) production, vascular function and oxidative status in young Wistar-Kyoto (WKY), borderline hypertensive (BHR) and spontaneously hypertensive (SHR) female rats. Five-week old rats were exposed to crowding for two weeks. Crowding elevated plasma corticosterone and accelerated BP ( versus basal) only in BHR. NO production and superoxide concentration were significantly higher in the aortas of control BHR and SHR versus WKY. Total acetylcholine (ACh)-induced relaxation in the femoral artery was reduced in control SHR versus WKY and BHR, and stress did not affect it significantly in any genotype. The attenuation of ACh-induced relaxation in SHR versus WKY was associated with reduction of its NO-independent component. Crowding elevated NO production in all strains investigated but superoxide concentration was increased only in WKY, which resulted in reduced NO-dependent relaxation in WKY. In crowded BHR and SHR, superoxide concentration was either unchanged or reduced, respectively, but NO-dependent relaxation was unchanged in both BHR and SHR versus their respective control group. This study points to genotype-related differences in stress vulnerability in young female rats. The most pronounced negative influence of stress was observed in BHR despite preserved endothelial function.