Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2014, Article ID 415651, 8 pages
http://dx.doi.org/10.1155/2014/415651
Research Article

Fibrinogen Alpha Chain Precursor and Apolipoprotein A-I in Urine as Biomarkers for Noninvasive Diagnosis of Calcium Oxalate Nephrolithiasis: A Proteomics Study

1Department of Urological Surgery, Shanghai Tenth People’s Hospital, Tongji University, Shanghai 200072, China
2Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China

Received 17 February 2014; Revised 8 April 2014; Accepted 4 July 2014; Published 23 July 2014

Academic Editor: Tomohito Gohda

Copyright © 2014 Wei Zhu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. M. Soucie, M. J. Thun, R. J. Coates, W. McClellan, W. Mcclellan, and H. Austin, “Demographic and geographic variability of kidney stones in the United States,” Kidney International, vol. 46, no. 3, pp. 893–899, 1994. View at Publisher · View at Google Scholar · View at Scopus
  2. Q. Zeng and Y. He, “Age-specific prevalence of kidney stones in Chinese urban inhabitants,” Urolithiasis, vol. 41, no. 1, pp. 91–93, 2013. View at Publisher · View at Google Scholar · View at Scopus
  3. R. Bartoletti, T. Cai, N. Mondaini et al., “Epidemiology and risk factors in urolithiasis,” Urologia Internationalis, vol. 79, supplement 1, pp. 3–7, 2007. View at Publisher · View at Google Scholar · View at Scopus
  4. C. D. Scales Jr., A. C. Smith, J. M. Hanley, C. S. Saigal, and Urologic Diseases in America Project, “Prevalence of kidney stones in the United States,” European Urology, vol. 62, no. 1, pp. 160–165, 2012. View at Google Scholar
  5. A. Trinchieri, F. Ostini, R. Nespoli, F. Rovera, E. Montanari, and G. Zanetti, “A prospective study of recurrence rate and risk factors for recurrence after a first renal stone,” Journal of Urology, vol. 162, no. 1, pp. 27–30, 1999. View at Publisher · View at Google Scholar · View at Scopus
  6. J. Hippisley-Cox and C. Coupland, “Predicting the risk of chronic kidney disease in men and women in England and Wales: prospective derivation and external validation of the QKidney® Scores,” BMC Family Practice, vol. 11, article 49, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. S. Vupputuri, J. M. Soucie, W. McClellan, and D. P. Sandler, “History of kidney stones as a possible risk factor for chronic kidney disease,” Annals of Epidemiology, vol. 14, no. 3, pp. 222–228, 2004. View at Publisher · View at Google Scholar · View at Scopus
  8. M. Daudon, J. C. Doré, P. Jungers, and B. Lacour, “Changes in stone composition according to age and gender of patients: a multivariate epidemiological approach,” Urological Research, vol. 32, no. 3, pp. 241–247, 2004. View at Google Scholar · View at Scopus
  9. S. Decramer, A. G. de Peredo, B. Breuil et al., “Urine in clinical proteomics,” Molecular and Cellular Proteomics, vol. 7, no. 10, pp. 1850–1862, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. D. Fliser, J. Novak, V. Thongboonkerd et al., “Advances in urinary proteome analysis and biomarker discovery,” Journal of the American Society of Nephrology, vol. 18, no. 4, pp. 1057–1071, 2007. View at Publisher · View at Google Scholar · View at Scopus
  11. J. J. Coon, P. Zürbig, M. Dakna et al., “CE-MS analysis of the human urinary proteome for biomarker discovery and disease diagnostics,” Proteomics-Clinical Applications, vol. 2, no. 7-8, pp. 964–973, 2008. View at Publisher · View at Google Scholar · View at Scopus
  12. D. Theodorescu, E. Schiffer, H. W. Bauer et al., “Discovery and validation of urinary biomarkers for prostate cancer,” Proteomics—Clinical Applications, vol. 2, no. 4, pp. 556–570, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. M. Saito, M. Kimoto, T. Araki et al., “Proteome analysis of gelatin-bound urinary proteins from patients with bladder cancers,” European Urology, vol. 48, no. 5, pp. 865–871, 2005. View at Publisher · View at Google Scholar · View at Scopus
  14. M. A. Rogers, P. Clarke, J. Noble et al., “Proteomic profiling of urinary proteins in renal cancer by surface enhanced laser desorption ionization and neural-network analysis: identification of key issues affecting potential clinical utility,” Cancer Research, vol. 63, no. 20, pp. 6971–6983, 2003. View at Google Scholar · View at Scopus
  15. P. Hudler, M. Gorsic, and R. Komel, “Proteomic strategies and challenges in tumor metastasis research,” Clinical and Experimental Metastasis, vol. 27, no. 6, pp. 441–451, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. B. Zethelius, L. Berglund, J. Sundström et al., “Use of multiple biomarkers to improve the prediction of death from cardiovascular causes,” The New England Journal of Medicine, vol. 358, no. 20, pp. 2107–2116, 2008. View at Publisher · View at Google Scholar · View at Scopus
  17. E. F. Petricoin, A. M. Ardekani, B. A. Hitt et al., “Use of proteomic patterns in serum to identify ovarian cancer,” The Lancet, vol. 359, no. 9306, pp. 572–577, 2002. View at Google Scholar
  18. D. Theodorescu, S. Wittke, M. M. Ross et al., “Discovery and validation of new protein biomarkers for urothelial cancer: a prospective analysis,” The Lancet Oncology, vol. 7, no. 3, pp. 230–240, 2006. View at Publisher · View at Google Scholar · View at Scopus
  19. V. Thongboonkerd, N. Songtawee, and S. Sritippayawan, “Urinary proteome profiling using microfluidic technology on a chip,” Journal of Proteome Research, vol. 6, no. 5, pp. 2011–2018, 2007. View at Publisher · View at Google Scholar · View at Scopus
  20. M. Haubitz, S. Wittke, E. M. Weissinger et al., “Urine protein patterns can serve as diagnostic tools in patients with IgA nephropathy,” Kidney International, vol. 67, no. 6, pp. 2313–2320, 2005. View at Publisher · View at Google Scholar · View at Scopus
  21. K. P. Aggarwal, S. Tandon, P. K. Naik, S. K. Singh, and C. Tandon, “Novel antilithiatic cationic proteins from human calcium oxalate renal stone matrix identified by MALDI-TOF-MS endowed with cytoprotective potential: an insight into the molecular mechanism of urolithiasis,” Clinica Chimica Acta, vol. 415, pp. 181–190, 2013. View at Publisher · View at Google Scholar · View at Scopus
  22. T. Pacchiarotta, P. J. Hensbergen, M. Wuhrer et al., “Fibrinogen alpha chain O-glycopeptides as possible markers of urinary tract infection,” Journal of Proteomics, vol. 75, no. 3, pp. 1067–1073, 2012. View at Publisher · View at Google Scholar · View at Scopus
  23. T. Lei, X. Zhao, S. Jin, Q. Meng, H. Zhou, and M. Zhang, “Discovery of potential bladder cancer biomarkers by comparative urine proteomics and analysis,” Clinical Genitourinary Cancer, vol. 11, no. 1, pp. 56–62, 2013. View at Publisher · View at Google Scholar · View at Scopus
  24. A. Krishnamoorthy, A. K. Ajay, D. Hoffmann et al., “Fibrinogen β-derived Bβ15-42 peptide protects against kidney ischemia/reperfusion injury,” Blood, vol. 118, no. 7, pp. 1934–1942, 2011. View at Publisher · View at Google Scholar · View at Scopus
  25. A. F. Drew, H. Liu, J. M. Davidson, C. C. Daugherty, and J. L. Degen, “Wound-healing defects in mice lacking fibrinogen,” Blood, vol. 97, no. 12, pp. 3691–3698, 2001. View at Publisher · View at Google Scholar · View at Scopus
  26. S. Sethi, J. A. Vrana, J. D. Theis et al., “Laser microdissection and mass spectrometry-based proteomics aids the diagnosis and typing of renal amyloidosis,” Kidney International, vol. 82, no. 2, pp. 226–234, 2012. View at Publisher · View at Google Scholar · View at Scopus
  27. J. Lopez-Hellin, C. Cantarell, L. Jimeno et al., “A form of apolipoprotein a-I is found specifically in relapses of focal segmental glomerulosclerosis following transplantation,” The American Journal of Transplantation, vol. 13, no. 2, pp. 493–500, 2013. View at Publisher · View at Google Scholar · View at Scopus
  28. C. Glass, R. C. Pittman, M. Civen, and D. Steinberg, “Uptake of high-density lipoprotein-associated apoprotein A-I and cholesterol esters by 16 tissues of the rat in vivo and by adrenal cells and hepatocytes in vitro,” The Journal of Biological Chemistry, vol. 260, no. 2, pp. 744–750, 1985. View at Google Scholar · View at Scopus
  29. S. M. Hammad, J. L. Barth, C. Knaak, and W. S. Argraves, “Megalin acts in concert with cubilin to mediate endocytosis of high density lipoproteins,” The Journal of Biological Chemistry, vol. 275, no. 16, pp. 12003–12008, 2000. View at Publisher · View at Google Scholar · View at Scopus
  30. R. Kozyraki, J. Fyfe, M. Kristiansen et al., “The intrinsic factor-vitamin B12 receptor, cubilin, is a high-affinity apolipoprotein A-I receptor facilitating endocytosis of high-density lipoprotein,” Nature Medicine, vol. 5, no. 6, pp. 656–661, 1999. View at Publisher · View at Google Scholar · View at Scopus